Skip to main content

Advertisement

Log in

Cytoskeletal filaments and associated proteins during restricted trophoblast invasion in bovine placentomes: light and transmission electron microscopy and RT-PCR

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Trophoblast cell migration is unusual in epitheliochorial placentae but occurs in placentomes of cows as “restricted” trophoblast invasion of binucleated trophoblast giant cells (TGC). Migration may be induced by integrin binding to the extracellular matrix initiating two pathways: (1) conformational changes of the actin cytoskeleton induced by an accumulation of its associated proteins and (2) integrin-dependent phosphorylation of various protein kinases. In cow placentomes, actin, its associated proteins (α-actinin, vinculin) and a key protein kinase of the signal transduction cascade (phosphorylated mitogen-activated protein kinase, pMAPK) were localized by immunogold-silver enhancement and immunoperoxidase staining at the light- and transmission electron-microscopical levels. Findings were confirmed by amplification of specific mRNA transcripts by reverse transcriptase/polymerase chain reaction. Actin and α-actinin were co-localized apically in mononuclear trophoblast cells, along the cytoplasmic membrane of TGC and apically in maternal crypt cells. The actin and α-actinin immunoreaction occurred as a band of electron-dense particles beneath the cytoplasmic membrane. Vinculin labelling was membrane-associated in TGC and in fetal and maternal endothelial cells. MAPK was observed as nuclear clusters in both kinds of trophoblast cells and was less dense in single uterine epithelial cells. Most MAPK immunoreactivity was detected in the nuclei of the trophoblast epithelium but was also sometimes membrane-associated in the cytoplasm. Thus, actin, α-actinin, MAPK and vinculin may be involved in the regulation of TGC migration. “Restricted” trophoblast invasion could serve as a model for invasive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–d
Fig. 3a–f
Fig. 4

Similar content being viewed by others

References

  • Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1999) Lehrbuch der Molekularen Zellbiologie, 3rd edn. Wiley, Weinheim New York Basel Cambridge Tokyo

  • Aplin AE, Stewart SA, Assoian RK, Juliano RL (2001) Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 153:273–282

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL (1994a) Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 269:26602–26605

    CAS  PubMed  Google Scholar 

  • Chen YP, O’Toole TE, Shipley T, Forsyth J, La Flamme SE, Yamada KM, Shattil SJ, Ginsberg MH (1994b) “Inside-out” signal transduction inhibited by isolated integrin cytoplasmic domains. J Biol Chem 269:18307–18310

    CAS  PubMed  Google Scholar 

  • Cho SY, Klemke RL (2000) Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J Cell Biol 149:223–236

    CAS  PubMed  Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239

    CAS  PubMed  Google Scholar 

  • Damsky CH, Fitzgerald ML, Fisher SJ (1992) Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester differentiation along the invasive pathway, in vivo. J Clin Invest 89:210–222

    CAS  PubMed  Google Scholar 

  • Damsky CH, Librach C, Lim KH, Fitzgerald ML, McMaster MT, Janatpour M, Yan Zhou, Logan SK, Fisher SJ (1994) Integrin switching regulates normal trophoblast invasion. Development 120:3657–3666

    CAS  PubMed  Google Scholar 

  • Davies J, Wimsatt WA (1966) Observation on the fine structure of the sheep placenta. Acta Anat 65:182–223

    CAS  Google Scholar 

  • Fanning AS, Mitic LL, Anderson JM (1999) Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol 10:1337–1345

    CAS  PubMed  Google Scholar 

  • Fincham VJ, James M, Frame MC, Winder SJ (2000) Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J 19:2911–2923

    Article  CAS  PubMed  Google Scholar 

  • Garrat AN, Humphries MJ (1995) Recent insights into ligand binding, activation and signalling by integrin adhesion receptors. Acta Anat 154:34–45

    Google Scholar 

  • Geiger B, Yehuda-Levenberg S, Bershadsky AD (1995) Molecular interactions in the submembrane plaque of cell-cell and cell-matrix adhesions. Acta Anat 154:46–62

    CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Glading A, Überall F, Keyse SM, Lauffenburger DA, Wells A (2001) Membrane proximal ERK signaling is required for M-calpain activation downstream of epidermal growth factor receptor signaling. J Biol Chem 276:23341–23348

    Article  CAS  PubMed  Google Scholar 

  • Greenstein JS, Murray RW, Foley RC (1958) Observations on the morphogenesis and histochemistry of the bovine preattachment placenta between 16 and 33 days of gestation. Anat Rec 132:321–341

    CAS  PubMed  Google Scholar 

  • Hoffman LH, Wooding FBP (1993) Giant and binucleate trophoblast cells of mammals. Exp Zool 266:559–577

    CAS  PubMed  Google Scholar 

  • Howe AK, Aplin AE, Juliano RL (2001) Anchorage-dependent ERK signaling—mechanisms and consequences. Curr Opin Gen Dev 12:30–35

    Article  Google Scholar 

  • Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    CAS  Google Scholar 

  • Johnson GA, Bazer FW, Jaeger LA, Ka H, Garlow JE, Pfarrer C, Spencer TE, Burghardt RC (2001) Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep. Biol Reprod 65:820–828

    CAS  PubMed  Google Scholar 

  • Klisch K, Pfarrer C, Schuler G, Hoffmann B, Leiser R (1999) Tripolar acytokinetic mitosis and formation of feto-maternal syncytia in the bovine placentome: different modes of the generation of multinuclear cells. Anat Embryol 200:229–237

    PubMed  Google Scholar 

  • Leiser R (1975) Kontaktaufnahme zwischen Trophoblast und Uterusepithel während der frühen Implantation beim Rind. Anat Histol Embryol 4:63–86

    CAS  Google Scholar 

  • Leiser R, Kaufmann P (1994) Placental structure: in a comparative aspect. Exp Clin Endocrinol 102:122–134

    CAS  PubMed  Google Scholar 

  • Leiser R, Krebs C, Klisch K, Ebert B, Dantzer V, Schuler G, Hoffmann B (1997) Fetal villosity and microvasculature of the bovine placentome in the second half of gestation. J Anat 191:517–527

    Article  PubMed  Google Scholar 

  • Lohi J, Oivula J, Kivilaakso E, Kiviluoto T, Fröjdman K, Yamada Y, Burgeson RE, Leivo I, Virtanen I (2000) Basement membrane laminin-5 is deposited in colorectal adenomas and carcinomas and serves as ligand for α3β1 integrin. APMIS 108:161–172

    CAS  PubMed  Google Scholar 

  • MacLaren LA, Wildemann AG (1995) Fibronectin receptors in preimplantation development: cloning, expression and localisation of the α5 and β1 integrin subunits in bovine trophoblast. Biol Reprod 53:153–165

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM (1995) Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131:791–805

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Teramoto H, Gutkind JS, Yamada KM (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135:1633–1642

    CAS  PubMed  Google Scholar 

  • Morgan G, Wooding FBP (1983) Cell migration in the ruminant placenta. A freeze fracture study. J Ulrastruct Mol Struct Res 83:148–160

    CAS  Google Scholar 

  • Morino N, Mimura T, Hamasaki K, Tobe K, Ueki K, Kikuchi K, Takehara K, Kadowaki T, Yazaki Y, Nojima Y (1995) Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J Biol Chem 270:269–273

    Article  CAS  PubMed  Google Scholar 

  • Palovuori R, Eskelinen S (2000) Role of vinculin in the maintenance of cell-cell contacts in kidney epithelial MDBK cells. Eur J Cell Biol 79:961–974

    CAS  PubMed  Google Scholar 

  • Pavalko FM, Burridge K (1991) Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of α-actinin. J Cell Biol 114:481–491

    CAS  PubMed  Google Scholar 

  • Pavalko FM, Otey CA (1994) Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. Proc Soc Exp Biol Med 205:282–293

    CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu B, Karandika M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    CAS  PubMed  Google Scholar 

  • Peters TJ, Chapman BM, Wolfe MW, Soares MJ (2000) Placental lactogen-I gene activation in differentiating trophoblast cells: extrinsic and intrinsic regulation involving mitogen-activated protein kinase signaling pathways. J Endocrinol 165:443–456

    CAS  PubMed  Google Scholar 

  • Pfarrer C, Ebert B, Miglino MA, Klisch K and Leiser R (2001) The three-dimensional feto-maternal vascular interrelationship during early bovine placental development: a scanning electron microscopical study. J Anat 198:591–602

    Article  CAS  PubMed  Google Scholar 

  • Pfarrer C, Hirsch P, Guillomot M, Leiser R (2003) Interaction of integrin receptors with extracellular matrix is involved in trophoblast giant cell migration in bovine placentomes. Placenta 24:588–597

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  • Schnorr B, Kressin M (2001) Embryologie der Haustiere. Ein Kurzlehrbuch, 4th edn. Enke, Stuttgart

  • Schuler G (2000) Plazentare Steroide beim Rind: Biosynthese und Beziehung zu Wachstum und Differenzierung der Plazentome. Habilitationsschrift. Justus-Liebig-Universität, Giessen, Germany

    Google Scholar 

  • Small JV, Herzog M, Anderson K (1995) Actin filament organization in the fish keratocyte lamellipodium. J Cell Biol 129:1275–1286

    CAS  PubMed  Google Scholar 

  • Small JV, Rottner K, Kaverina I (1999) Functional design in the actin cytoskeleton. Curr Opin Cell Biol 11:54–60

    Google Scholar 

  • Steven DH (1975) Comparative placentation. Academic Press, New York

  • Thie M, Herter P, Pommerenke H, Dürr F, Sieckmann F, Nebe B, Rychly J, Denker HW (1997) Adhesiveness of the free surface of a human endometrial monolayer for trophoblast as related to actin cytoskeleton. Mol Hum Reprod 4:275–283

    Article  Google Scholar 

  • Wathes DC, Wooding FB (1980) An electron microscopic study of implantation in the cow. Am J Anat 159:285–306

    CAS  PubMed  Google Scholar 

  • White TW, Srinivas M, Ripps H, Trovato-Salinaro A, Condorelli DF, Bruzzone R (2002) Virtual cloning, functional expression, and gating analysis of human connexin31.9. Am J Physiol Cell Physiol 283:C960–C970

    CAS  PubMed  Google Scholar 

  • Wimsatt WA (1951) Observations on the morphogenesis, cytochemistry, and significance of the binucleate giant cells of the placenta of ruminants. Am J Anat 89:233–282

    Google Scholar 

  • Wooding FBP (1980) Electron microscopic localisation of binucleate cells in sheep placenta using phosphotungstic acid. Biol Reprod 22:357–365

    CAS  PubMed  Google Scholar 

  • Wooding FBP (1992) Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta 13:101–113

    CAS  PubMed  Google Scholar 

  • Wooding FBP, Becker JF (1987) Trinucleate cells and the ultrastructural localisation of bovine placental lactogen. Cell Tissue Res 247:667–673

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mrs. O. Dakischew, S. Kettner, T. Papadakis, S. Schubert-Porth and K. Wolf for their expert technical assistance and Dr. K. Steger for extending his knowledge regarding primer creation for RT-PCR. Furthermore, we acknowledge Drs. E. Hinsch and K.-D. Hinsch, supervisors of the graduate seminar “Cell-Cell Interaction in Reproduction”, for the excellent organization of their educational training.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Lang.

Additional information

We thank the Deutsche Forschungsgemeinschaft for financial support

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, C.Y., Hallack, S., Leiser, R. et al. Cytoskeletal filaments and associated proteins during restricted trophoblast invasion in bovine placentomes: light and transmission electron microscopy and RT-PCR. Cell Tissue Res 315, 339–348 (2004). https://doi.org/10.1007/s00441-003-0842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0842-x

Keywords

Navigation