Skip to main content

Advertisement

Log in

An immunocytochemical study of pulpal responses to cavity preparation by laser ablation in rat molars by using antibodies to heat shock protein (Hsp) 25 and class II MHC antigen

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Initial responses of odontoblasts and immunocompetent cells to cavity preparation by laser ablation were investigated in rat molars. In untreated control teeth, intense heat shock protein (Hsp) 25 immunoreactivity was found in the cell bodies of odontoblasts, whereas cells immunopositive for the class II major histocompatibility complex (MHC) antigen were predominantly located beneath the odontoblast layer in the dental pulp. Cavity preparation caused the destruction of the odontoblast layer and the shift of most class-II-MHC-positive cells from the pulp-dentin border toward the pulp core at the affected site. Twelve hours after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border and extended their processes deep into the exposed dentinal tubules, but subsequently disappeared from the pulp-dentin border together with Hsp-25-immunopositive cells by 24 h after the operation. By 3–5 days postoperation, distinct abscess formation consisting of polymorphonuclear leukocytes was found in the dental pulp. The penetration of masses of oral bacteria was recognizable in the dentinal tubules beneath the prepared cavity. These findings indicate that cavity preparation by laser ablation induces remarkable inflammation by continuous bacterial infections via dentinal tubules in this experimental model, thereby delaying pulpal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–h
Fig. 2a–h
Fig. 3a–h
Fig. 4a–d

Similar content being viewed by others

References

  • Aoki A, Ishikawa I, Yamada T, Otsuki M, Watanabe H, Tagami J, Ando Y, Yamamoto H (1998) Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. J Dent Res 77:1404–1414

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Préville X (1999) Role of Hsp 27 and related proteins. In: Latchman DS (ed) Handbook of experimental pharmacology, vol 136. Stress proteins. Springer, Berlin Heidelberg New York, pp 101–132

  • Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SAW (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85:1558–1570

    PubMed  Google Scholar 

  • Dostálová T, Jelínková H, Krejsa O, Hamal K, Kubelka J, Procházka S, Himmlová L (1997) Dentin and pulp response to erbium:YAG laser ablation: a preliminary evaluation of human teeth. J Clin Laser Med Surg 15:117–121

    PubMed  Google Scholar 

  • Eversole LR, Rizoiu I, Kimmel AI (1997) Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system. J Am Dent Assoc 128:1099–1106

    CAS  PubMed  Google Scholar 

  • Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances. I. Measurement of the ablation rate. Lasers Surg Med 9:338–344

    CAS  PubMed  Google Scholar 

  • Hoke JA, Burkes EJ Jr, Gomes ED, Wolbarsht ML (1990) Erbium:YAG (2.94 μm) laser effects on dental tissues. J Laser Appl 2:61–65

    CAS  PubMed  Google Scholar 

  • Hossain M, Nakamura Y, Yamada Y, Kimura Y, Matsumoto N, Matsumoto K (1999) Effects of Er,Cr:YSGG laser irradiation in human enamel and dentin: ablation and morphological studies. J Clin Laser Med Surg 17:155–159

    CAS  PubMed  Google Scholar 

  • Hossain M, Nakamura Y, Yamada Y, Suzuki N, Murakami Y, Matsumoto K (2001) Analysis of surface roughness of enamel and dentin after Er,Cr:YSGG laser irradiation. J Clin Laser Med Surg 19:297–303

    Article  CAS  PubMed  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  • Huot J, Roy G, Lambert H, Chrétien P, Landry J (1991) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res 51:5245–5252

    PubMed  Google Scholar 

  • Izumi T, Kobayashi I, Okamura K, Matsuo K, Kiyoshima T, Ishibashi Y, Inoue H, Sakai H (1996) An immunohistochemical study of HLA-DR and alpha 1-antichymotrypsin-positive cells in the pulp of human non-carious and carious teeth. Arch Oral Biol 41:627–630

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  Google Scholar 

  • Kamal AM, Okiji T, Kawashima N, Suda H (1997) Defense responses of dentin/pulp complex to experimentally induced caries in rat molars: an immunohistochemical study on kinetics of pulpal Ia antigen-expressing cells and macrophages. J Endod 23:115–120

    CAS  PubMed  Google Scholar 

  • Keller U, Hibst R (1997) Effects of Er:YAG laser in caries treatment: a clinical pilot study. Lasers Surg Med 20:32–38

    Article  CAS  PubMed  Google Scholar 

  • Kermani O, Lubatschowski H, Asshauer T, Ertmer W, Lukin A, Ermakov B, Krieglstein GK (1993) Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues. Lasers Surg Med 13:537–542

    CAS  PubMed  Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993a) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    PubMed  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993b) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    CAS  PubMed  Google Scholar 

  • Love RM, Chandler NP, Jenkinson HF (1996) Penetration of smeared or nonsmeared dentine by Streptococcus gordonii. Int Endod J 29:2–12

    CAS  PubMed  Google Scholar 

  • Mairesse N, Horman S, Mosselmans R, Galand P (1996) Antisense inhibition of the 27 kDa heat shock protein production affects growth rate and cytoskeletal organization in MCF-7 cells. Cell Biol Int 20:205–212

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Nakamura Y, Mazeki K, Kimura Y (1996) Clinical dental application of Er:YAG laser for class V cavity preparation. J Clin Laser Med Surg 14:123–127

    CAS  PubMed  Google Scholar 

  • McMaster WR, Williams AF (1979) Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol 9:426–433

    CAS  PubMed  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    CAS  PubMed  Google Scholar 

  • Mehlen P, Kretz-Remy C, Preville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J 15:2695–2706

    CAS  PubMed  Google Scholar 

  • Mehlen P, Mehlen AA, Godet J, Arrigo AP (1997) Hsp 27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 252:31657–31665

    Article  Google Scholar 

  • Ohshima H (1990) Ultrastructural changes in odontoblasts and pulp capillaries following cavity preparation in rat molars. Arch Histol Cytol 53:423–438

    CAS  PubMed  Google Scholar 

  • Ohshima H, Sato O, Kawahara I, Maeda T, Takano Y (1995) Responses of immunocompetent cells to cavity preparation in rat molars: an immunohistochemical study using OX6-monoclonal antibody. Connect Tissue Res 32:303–311

    CAS  PubMed  Google Scholar 

  • Ohshima H, Ajima H, Kawano Y, Nozawa-Inoue K, Wakisaka S, Maeda T (2000) Transient expression of heat shock protein (Hsp) 25 in the dental pulp and enamel organ during odontogenesis in the rat incisor. Arch Histol Cytol 63:381–395

    CAS  PubMed  Google Scholar 

  • Ohshima H, Nakakura-Ohshima K, Yamamoto H, Maeda T (2001a) Alteration in the expression of heat shock protein (Hsp) 25-immunoreactivity in the dental pulp of rat molars following tooth replantation. Arch Histol Cytol 64:425–437

    CAS  PubMed  Google Scholar 

  • Ohshima H, Nakakura-Ohshima K, Yamamoto H, Maeda T (2001b) Responses of odontoblasts to cavity preparation in rat molars as demonstrated by immunocytochemistry for heat shock protein (Hsp) 25. Arch Histol Cytol 64:493–501

    CAS  PubMed  Google Scholar 

  • Ohshima H, Nakakura-Ohshima K, Maeda T (2002) Expression of heat shock protein (Hsp) 25-immunoreactivity in the dental pulp and enamel organ during odontogenesis in the rat molar. Connect Tissue Res 43:220–223

    PubMed  Google Scholar 

  • Ohshima H, Nakakura-Ohshima K, Takeuchi K, Hoshino M, Takano Y, Maeda T (2003) Pulpal regeneration after cavity preparation, with special reference to close spatio-relationship between odontoblasts and immunocompetent cells. Microsc Res Tech 60:483–490

    Article  PubMed  Google Scholar 

  • Peters LB, Wesselink PR, Moorer WR (2000) Penetration of bacteria in bovine root dentine in vitro. Int Endod J 33:28–36

    Article  CAS  PubMed  Google Scholar 

  • Plumier JC, Hopkins DA, Robertson HA, Currie RW (1997) Constitutive expression of the 27-kDa heat shock protein (Hsp 27) in sensory and motor neurons of the rat nervous system. J Comp Neurol 384:409–428

    Article  CAS  PubMed  Google Scholar 

  • Rungvechvuttivittaya S, Okiji T, Suda H (1998) Responses of macrophage-associated antigen-expressing cells in the dental pulp of rat molars to experimental tooth replantation. Arch Oral Biol 43:701–710

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Okiji T, Suda H (1999) Co-increase of nerve fibers and HLA-DR- and/or factor-XIIIa-expressing dendritic cells in dentinal caries-affected regions of the human dental pulp: an immunohistochemical study. J Dent Res 78:1596–1608

    CAS  PubMed  Google Scholar 

  • Shimizu A, Nakakura-Ohshima K, Noda T, Maeda T, Ohshima H (2000) Responses of immunocompetent cells in the dental pulp to replantation during the regeneration process in rat molars. Cell Tissue Res 302:221–233

    CAS  PubMed  Google Scholar 

  • Smith AJ (2002) Dentin formation and repair. In: Hargreaves KM, Goodis HE (eds) Seltzer and Bender’s dental pulp. Quintessence Publishing, Chicago Berlin Tokyo London Paris Milan Barcelona Istanbul São Paulo New Delhi Moscow Prague Warsaw, pp 41–62

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    PubMed  Google Scholar 

  • Takamori K (2000) A histopathological and immunohistochemical study of dental pulp and pulpal nerve fibers in rats after the cavity preparation using Er:YAG laser. J Endod 26:95–99

    Article  CAS  PubMed  Google Scholar 

  • Takeda FH, Harashima T, Eto JN, Kimura Y, Matsumoto K (1998) Effect of Er:YAG laser treatment on the root canal walls of human teeth: an SEM study. Endod Dent Traumatol 14:270–273

    CAS  PubMed  Google Scholar 

  • Takizawa M (1996) A study on Er:YAG laser ablation for dental hard substances (in Japanese). Jpn J Cons Dent 39:1089–1128

    Google Scholar 

  • Tanabe K, Yoshiba K, Yoshiba N, Iwaku M, Ozawa H (2002) Immunohistochemical study on pulpal response in rat molars after cavity preparation by Er:YAG laser. Eur J Oral Sci 110:237–245

    Article  PubMed  Google Scholar 

  • Wu W, Welsh MJ (1996) Expression of the 25-kDa heat-shock protein (HSP27) correlates with resistance to the toxicity of cadmium chloride, mercuric chloride, cis-platinum(II)-diammine dichloride, or sodium arsenite in mouse embryonic stem cells transfected with sense or antisense HSP27 cDNA. Toxicol Appl Pharmacol 141:330–339

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Hossain M, Nakamura Y, Suzuki N, Matsumoto K (2001) Comparison between the removal effect of mechanical, Nd:YAG, and Er:YAG laser systems in carious dentin. J Clin Laser Med Surg 19:239–243

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba N, Yoshiba K, Nakamura H, Iwaku M, Ozawa H (1996) Immunohistochemical localization of HLA-DR-positive cells in unerupted and erupted normal and carious human teeth. J Dent Res 75:1585–1589

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kiichi Takeuchi and Masaaki Hoshino for their technical assistance. They are also grateful to Niic (Niigata, Japan) for providing the CrTmEr:YAG laser appliance and necessary technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Ohshima.

Additional information

This work was supported by Grant-in-Aid for Scientific Research to promote 2001-Multidisciplinary Research Projects in 2001–2005, and KAKENHI (C) (nos. 12671765 and 14571727 to H.O.) from MEXT

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Nomura, S., Maeda, T. et al. An immunocytochemical study of pulpal responses to cavity preparation by laser ablation in rat molars by using antibodies to heat shock protein (Hsp) 25 and class II MHC antigen. Cell Tissue Res 315, 311–319 (2004). https://doi.org/10.1007/s00441-003-0840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0840-z

Keywords

Navigation