Skip to main content

Advertisement

Log in

Molecular distinction between arteries and veins

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The vertebrate vascular system is essential for the delivery and exchange of gases, hormones, metabolic wastes and immunity factors. These essential functions are carried out in large part by two types of anatomically distinct blood vessels, namely arteries and veins. Previously, circulatory dynamics were thought to play a major role in establishing this dichotomy, but recently it has become clear that arterial and venous endothelial cells are molecularly distinct even before the output of the first embryonic heartbeat, thus revealing the existence of genetic programs coordinating arterial-venous differentiation. Here we review some of the molecular mechanisms involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3A–C.
Fig. 4A, B.

Similar content being viewed by others

References

  • Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA et al. (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299:247–251

    Article  CAS  PubMed  Google Scholar 

  • Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    CAS  PubMed  Google Scholar 

  • Adams LD, Geary RL, McManus B, Schwartz SM (2000) A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 87:623–631

    Google Scholar 

  • Adams RH, Diella F, Hennig S, Helmbacher F, Deutsch U, Klein R (2001) The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104:57–69

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Barrantes IB, Elia AJ, Wunsch K, De Angelis MH, Mak TW, Rossant J, Conlon RA, Gossler A, de la Pompa JL (1999) Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol 9:470–480

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A, Watson N, Klagsbrun M, Mamluk R, Newgreen DF (2003) Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev Biol 255:77–98

    CAS  PubMed  Google Scholar 

  • Beatus P, Lendahl U (1998) Notch and neurogenesis. J Neurosci Res 54:125–136

    CAS  PubMed  Google Scholar 

  • Beatus P, Lundkvist J, Oberg C, Lendahl U (1999) The notch 3 intracellular domain represses notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development 126:3925–3935

    CAS  PubMed  Google Scholar 

  • Beck L Jr, D'Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373

    CAS  PubMed  Google Scholar 

  • Beckers J, Clark A, Wunsch K, Hrabe De Angelis M, Gossler A (1999) Expression of the mouse Delta1 gene during organogenesis and fetal development. Mech Dev 84:165–168

    Article  CAS  PubMed  Google Scholar 

  • Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  • Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet JL, Gossler A (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121:2407–2718

    CAS  PubMed  Google Scholar 

  • Cahill BE, Kerstein MD (1987) Ischemic neuropathy. Surg Gynecol Obstet 165:469–474

    PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    CAS  PubMed  Google Scholar 

  • Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ, Lowenstein DH, Skarnes WC, Chedotal A, Tessier-Lavigne M (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56

    PubMed  Google Scholar 

  • Claesson-Welsh L (2003) Signal transduction by vascular endothelial growth factor receptors. Biochem Soc Trans 31:20–24

    PubMed  Google Scholar 

  • Cleaver O, Krieg PA (1999) Molecular mechanisms of vascular development. In: Rosenthal N (ed) Heart development. Academic, San Diego, pp 221–252

  • Eph Nomenclature Committee (1997) Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90:403–404

    PubMed  Google Scholar 

  • Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819

    Google Scholar 

  • Del Amo FF, Smith DE, Swiatek PJ, Gendron-Maguire M, Greenspan RJ, McMahon AP, Gridley T (1992) Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115:737–744

    PubMed  Google Scholar 

  • Fakhari M, Pullirsch D, Abraham D, Paya K, Hofbauer R, Holzfeind P, Hofmann M, Aharinejad S (2002) Selective upregulation of vascular endothelial growth factor receptors neuropilin-1 and -2 in human neuroblastoma. Cancer 94:258–263

    CAS  PubMed  Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    CAS  PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Google Scholar 

  • Flamme I, von Reutern M, Drexler HC, Syed Ali S, Risau W (1995) Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 171:399–414

    Google Scholar 

  • Folkman J, D'Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Google Scholar 

  • Fryxell KJ, Soderlund M, Jordan TV (2001) An animal model for the molecular genetics of CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). Stroke 32:6–11

    CAS  PubMed  Google Scholar 

  • Fuh G, Garcia KC, de Vos AM (2000) The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 275:26690–26695

    CAS  PubMed  Google Scholar 

  • Gagnon ML, Bielenberg DR, Gechtman Z, Miao HQ, Takashima S, Soker S, Klagsbrun M (2000) Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity. Proc Natl Acad Sci U S A 97:2573–2578

    Article  CAS  PubMed  Google Scholar 

  • Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG et al. (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19

    CAS  PubMed  Google Scholar 

  • Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    CAS  PubMed  Google Scholar 

  • Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D et al. (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423

    CAS  PubMed  Google Scholar 

  • Gerety SS, Anderson DJ (2002) Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129:1397–410

    CAS  PubMed  Google Scholar 

  • Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414

    CAS  PubMed  Google Scholar 

  • Giger RJ, Urquhart ER, Gillespie SK, Levengood DV, Ginty DD, Kolodkin AL (1998) Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 21:1079–1092

    CAS  PubMed  Google Scholar 

  • Giger RJ, Cloutier JF, Sahay A, Prinjha RK, Levengood DV, Moore SE, Pickering S, Simmons D, Rastan S, Walsh FS et al. (2000) Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25:29–41

    CAS  PubMed  Google Scholar 

  • Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J Biol Chem 275:29922

    PubMed  Google Scholar 

  • Greenwald I, Rubin GM (1992) Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 68:271–281

    CAS  PubMed  Google Scholar 

  • Hamada K, Oike Y, Ito Y, Maekawa H, Miyata K, Shimomura T, Suda T (2003) Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol 23:190–197

    Article  CAS  PubMed  Google Scholar 

  • Helbling PM, Saulnier DM, Brandli AW (2000) The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development 127:269–278

    CAS  PubMed  Google Scholar 

  • Henderson VJ, Cohen RG, Mitchell RS, Kosek JC Miller DC (1986) Biochemical (functional) adaptation of "arterialized" vein grafts. Ann Surg 203:339–345

    CAS  Google Scholar 

  • Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G (2001) Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev 109:115–119

    CAS  PubMed  Google Scholar 

  • Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586

    Google Scholar 

  • Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354

    Article  CAS  PubMed  Google Scholar 

  • Hoch JR, Stark VK, van Rooijen N, Kim JL, Nutt MP, Warner TF (1999) Macrophage depletion alters vein graft intimal hyperplasia. Surgery 126:428–437

    Article  CAS  PubMed  Google Scholar 

  • Holder N, Klein R (1999) Eph receptors and ephrins: effectors of morphogenesis. Development 126:2033–2044

    CAS  PubMed  Google Scholar 

  • Hrabe de Angelis M, McIntyre J 2nd, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386:717–721

    PubMed  Google Scholar 

  • Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN (2002) CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol 12:371–384

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  • Kim I, Ryu YS, Kwak HJ, Ahn SY, Oh JL, Yancopoulos GD, Gale NW, Koh GY (2002) EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB J 16:1126–1128

    CAS  PubMed  Google Scholar 

  • Kitsukawa T, Shimono A, Kawakami A, Kondoh H Fujisawa H (1995) Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121:4309–4318

    CAS  PubMed  Google Scholar 

  • Kopan R, Turner DL (1996) The Notch pathway: democracy and aristocracy in the selection of cell fate. Curr Opin Neurobiol 6:594–601

    Article  CAS  PubMed  Google Scholar 

  • Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457

    CAS  PubMed  Google Scholar 

  • Kortschak RD, Tamme R, Lardelli M (2001) Evolutionary analysis of vertebrate Notch genes. Dev Genes Evol 211:350–354

    Article  CAS  PubMed  Google Scholar 

  • Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R et al. (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    CAS  PubMed  Google Scholar 

  • Kremer C, Breier G, Risau W, Plate KH (1997) Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57:3852–3859

    CAS  PubMed  Google Scholar 

  • Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    Article  CAS  PubMed  Google Scholar 

  • Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3:840–845

    CAS  PubMed  Google Scholar 

  • Lawson ND, Scheer N, Pham V, Kim C-H, Chitnis AB, Campos-Ortega J, Weinstein BM (2001a) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    CAS  PubMed  Google Scholar 

  • Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001b) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    CAS  PubMed  Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM (2002a) sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    CAS  PubMed  Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM (2002b) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch signaling pathway during arterial endothelial cell differentiation. Dev Cell 3:127–136

    CAS  PubMed  Google Scholar 

  • Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M (2002) Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci U S A 99:10470–10475

    Article  CAS  PubMed  Google Scholar 

  • Lewis J (1998) Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 9:583–589

    CAS  PubMed  Google Scholar 

  • Liang D, Chang JR, Chin AJ, Smith A, Kelly C, Weinberg ES, Ge R (2001) The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development. Mech Dev 108:29–43

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23:14–25

    Article  CAS  PubMed  Google Scholar 

  • Loomes KM, Underkoffler LA, Morabito J, Gottlieb S, Piccoli DA, Spinner NB, Baldwin HS, Oakey RJ (1999) The expression of Jagged1 in the developing mammalian heart correlates with cardiovascular disease in Alagille syndrome. Hum Mol Genet 8:2443–2449

    Article  CAS  PubMed  Google Scholar 

  • Mamluk R, Gechtman Z, Kutcher ME, Gasiunas N, Gallagher J, Klagsbrun M (2002) Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J Biol Chem 277:24818–24825

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Lewis J (1989) Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin. Int J Dev Biol 33:379–387

    CAS  PubMed  Google Scholar 

  • McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (2000) Online Mendelian Inheritance in Man, OMIM (TM). (eds.: McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, and National Center for Biotechnology Information, National Library of Medicine)

  • Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA Klagsbrun M (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233–242

    CAS  PubMed  Google Scholar 

  • Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128:3359–3370

    CAS  PubMed  Google Scholar 

  • Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705

    CAS  PubMed  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228:151–165

    CAS  PubMed  Google Scholar 

  • Muskavitch MA (1994) Delta-notch signaling and Drosophila cell fate choice. Dev Biol 166:415–430

    Google Scholar 

  • Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments. Dev Biol 216:72–84

    CAS  PubMed  Google Scholar 

  • Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D, Olson EN (2000) Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci U S A 97:13655–13660

    Article  CAS  PubMed  Google Scholar 

  • Nakamura F, Kalb RG, Strittmatter SM (2000) Molecular basis of semaphorin-mediated axon guidance. J Neurobiol 44:219–229

    Article  CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12:13–19

    CAS  Google Scholar 

  • Oh H, Takagi H, Otani A, Koyama S, Kemmochi S, Uemura A, Honda Y (2002) Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci U S A 99:383–388

    Article  Google Scholar 

  • Oike Y, Ito Y, Hamada K, Zhang XQ, Miyata K, Arai F, Inada T, Araki K, Nakagata N, Takeya M et al. (2002) Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells. Blood 100:1326–1333

    CAS  PubMed  Google Scholar 

  • Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenfuhr M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409

    CAS  PubMed  Google Scholar 

  • Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R (2002) EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9:725–737

    CAS  PubMed  Google Scholar 

  • Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654

    CAS  PubMed  Google Scholar 

  • Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21:4593–4599

    Article  CAS  PubMed  Google Scholar 

  • Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Jackson DG, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A 99:16069–16074

    Article  CAS  PubMed  Google Scholar 

  • Reaume AG, Conlon RA, Zirngibl R, Yamaguchi TP, Rossant J (1992) Expression analysis of a Notch homologue in the mouse embryo. Dev Biol 154:377–387

    Google Scholar 

  • Rodriguez-Niedenfuhr M, Papoutsi M, Christ B, Nicolaides KH, von Kaisenberg CS, Tomarev SI, Wilting J (2001) Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl) 204:399–406

    Google Scholar 

  • Rooke JE, Xu T (1998) Positive and negative signals between interacting cells for establishing neural fate. Bioessays 20:209–214

    Article  CAS  PubMed  Google Scholar 

  • Ruchoux MM, Chabriat H, Bousser MG, Baudrimont M, Tournier-Lasserve E (1994) Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 25:2291–2292

    CAS  PubMed  Google Scholar 

  • Ruchoux MM, Domenga V, Brulin P, Maciazek J, Limol S, Tournier-Lasserve E, Joutel A (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162:329-342

    PubMed  Google Scholar 

  • Sawamoto K, Okano H (1996) Cell-cell interactions during neural development: multiple types of lateral inhibitions involved in Drosophila eye development. Neurosci Res 26:205–214

    CAS  PubMed  Google Scholar 

  • Schlosser G, Northcutt RG (2000) Development of neurogenic placodes in Xenopus laevis. J Comp Neurol 418:121–146

    Article  CAS  PubMed  Google Scholar 

  • Schroder JM, Sellhaus B, Jorg J (1995) Identification of the characteristic vascular changes in a sural nerve biopsy of a case with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Acta Neuropathol (Berl) 89:116–121

    Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    PubMed  Google Scholar 

  • Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G, Isner J, Folkman J, Gimbrone MA Jr, Anderson DJ (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230:139–150

    CAS  PubMed  Google Scholar 

  • Shirayoshi Y, Yuasa Y, Suzuki T, Sugaya K, Kawase E, Ikemura T, Nakatsuji N (1997) Proto-oncogene of int-3, a mouse Notch homologue, is expressed in endothelial cells during early embryogenesis. Genes Cells 2:213–224

    CAS  PubMed  Google Scholar 

  • Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, Kintner CR, Stark KL (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

    CAS  PubMed  Google Scholar 

  • Simpson P (1990) Notch and the choice of cell fate in Drosophila neuroepithelium. Trends Genet 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Smithers L, Haddon C, Jiang Y, Lewis J (2000) Sequence and embryonic expression of deltaC in the zebrafish. Mech Dev 90:119–123

    Article  CAS  PubMed  Google Scholar 

  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    PubMed  Google Scholar 

  • Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S et al. (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109:327–336

    Article  CAS  PubMed  Google Scholar 

  • Stanley JC, Graham LM, Whitehouse WM (1982) Autogenous saphenous vein as an arterial graft: clinical status. In: Stanley JC (ed) Biologic and synthetic vascular protheses. Grune and Stratton, New York, pp 333–349

  • Stark VK, Warner TF, Hoch JR (1997) An ultrastructural study of progressive intimal hyperplasia in rat vein grafts. J Vasc Surg 26:94–103

    CAS  PubMed  Google Scholar 

  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notch1 is essential for postimplantation development in mice. Genes Dev 8:707–719

    CAS  PubMed  Google Scholar 

  • Taichman DB, Loomes KM, Schachtner SK, Guttentag S, Vu C, Williams P, Oakey RJ, Baldwin HS (2002) Notch1 and Jagged1 expression by the developing pulmonary vasculature. Dev Dyn 225:166–175

    CAS  PubMed  Google Scholar 

  • Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F, Niwa H, Miyazaki Ji J, Hirota S, Kitamura Y et al. (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A 99:3657–3662

    Article  CAS  PubMed  Google Scholar 

  • Tamagnone L, Comoglio PM (2000) Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol 10:377–383

    Article  CAS  PubMed  Google Scholar 

  • Teruyama K, Abe M, NakanoT, Takahashi S, Yamada S, Sato Y (2001) Neurophilin-1 is a downstream target of transcription factor Ets-1 in human umbilical vein endothelial cells. FEBS Lett 504:1–4

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann H, Asashima M, Grunz H, Knochel W (1998) Neural induction in embryos. Dev Growth Differ 40:363–376

    CAS  PubMed  Google Scholar 

  • Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122:2251–2259

    CAS  PubMed  Google Scholar 

  • Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98:5643–5648

    Article  CAS  PubMed  Google Scholar 

  • Vargesson N, Patel K, Lewis J, Tickle C (1998) Expression patterns of Notch1, Serrate1, Serrate2 and Delta1 in tissues of the developing chick limb. Mech Dev 77:197–199

    Article  CAS  PubMed  Google Scholar 

  • Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164

    Article  CAS  PubMed  Google Scholar 

  • Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A 99:8219–8224

    Article  CAS  PubMed  Google Scholar 

  • Wallner K, Li C, Fishbein MC, Shah PK, Sharifi BG (1999) Arterialization of human vein grafts is associated with tenascin-C expression. J Am Coll Cardiol 34:871–875

    Google Scholar 

  • Wang HU, Anderson DJ (1997) Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18:383–396

    CAS  PubMed  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    CAS  PubMed  Google Scholar 

  • Weinstein BM, Lawson ND (2002) Arteries, veins, Notch, and Vegf. In: Cold Spring Harbor (ed) Cold Spring Harbor Symposium on Quantitative Biology, vol. 67. Cold Spring Harbor Press, Plainview, NY

  • Weinstein BM, Stemple DL, Driever W, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1:1143–1147

    CAS  PubMed  Google Scholar 

  • Witte MH, Bernas MJ, Martin CP, Witte CL (2001) Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 55:122–145

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    CAS  PubMed  Google Scholar 

  • Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC (2000) gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    CAS  PubMed  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  CAS  PubMed  Google Scholar 

  • Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E (1999) An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci U S A 96:13813–13818

    Article  CAS  PubMed  Google Scholar 

  • Zwolak RM, Adams MC, Clowes AW (1987) Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg 5:126–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jesús Torres-Vázquez is a Damon Runyon fellow supported by the Damon Runyon Cancer Research Foundation (DRG#1726–02)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brant M. Weinstein.

Additional information

The first two authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Vázquez, J., Kamei, M. & Weinstein, B.M. Molecular distinction between arteries and veins. Cell Tissue Res 314, 43–59 (2003). https://doi.org/10.1007/s00441-003-0771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0771-8

Keywords

Navigation