Skip to main content
Log in

Singular HJB equations with applications to KPZ on the real line

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

This paper is devoted to studying Hamilton-Jacobi-Bellman equations with distribution-valued coefficients, which are not well-defined in the classical sense and are understood by using the paracontrolled distribution method introduced in (Gubinelli et al. in Forum Math Pi 3(6):1, 2015). By a new characterization of weighted Hölder spaces and Zvonkin’s transformation we prove some new a priori estimates, and therefore establish the global well-posedness for singular HJB equations. As applications, we obtain global well-posedness in polynomial weighted Hölder spaces for KPZ type equations on the real line, as well as modified KPZ equations for which the Cole–Hopf transformation is not applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We refer to Sect. 4 for the meaning of subcritical and critical, which is different from the meaning in [27].

  2. Here the critical and subcritical conditions are different from the meaning in [27].

  3. In [15] the result is proved for \(d=3\), which could be extended to \(d=1\) by exactly the same argument.

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  2. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bertini, L., Giacomi, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bruned, Y., Gabriel, F., Hairer, M., Zambotti, L.: Geometric stochastic heat equations. J. Am. Math. Soc. 35(1), 1–80 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  7. Cole, J.D.: On a Quasi-Linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225–236 (1951)

    Article  MathSciNet  Google Scholar 

  8. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(1), 113000176 (2012)

  9. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab. 46(5), 2621–2679 (2018)

    Article  MathSciNet  Google Scholar 

  10. Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. Ann. Probab. 46(3), 1710–1763 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Wu, B., Zhu, R., Zhu, X.: Stochastic heat equations for infinite strings with values in a manifold. Trans. Am. Math. Soc. 374(1), 407–452 (2021)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z.Q., Zhang, X.: Uniqueness of stable-like processes. arXiv:1604.02681 (2016)

  13. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    Article  MathSciNet  Google Scholar 

  14. Eells, J., Sampson, H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  15. Furlan, M., Gubinelli, M.: Weak universality for a class of \(3\)d stochastic reaction–diffusion models. Probab. Theory Relat. Fields 173, 1099–1164 (2019)

    Article  MathSciNet  Google Scholar 

  16. Funaki, T., Quastel, J.: KPZ equation, its renormalization and invariant measures. Stoch. PDE. Anal. Comp. 3, 159–220 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer (2006)

  18. Gubinelli, M., Hofmanová, M.: Global solutions to elliptic and parabolic \(\Phi ^4\) models in Euclidean space. Commun. Math. Phys. 368(3), 1201–1266 (2019)

    Article  MathSciNet  Google Scholar 

  19. Gubinelli, M., Hofmanová, M.: A PDE construction of the Euclidean \(\Phi ^4\) quantum field theory. Commun. Math. Phys. 384(1), 1–75 (2021)

    Article  MathSciNet  Google Scholar 

  20. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3(6), 1 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Gubinelli, M., Jara, M.: Regularization by noise and stochastic Burgers equations. Stoch. Part. Differ. Equ.: Anal. Comput. 1(2), 325–350 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Goncalves, P., Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MathSciNet  Google Scholar 

  23. Gubinelli, M., Perkowski, N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)

    Article  MathSciNet  Google Scholar 

  24. Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique. J. Am. Math. Soc. 31(2), 427–471 (2018)

    Article  MathSciNet  Google Scholar 

  25. Gubinelli, M., Perkowski, N.: The infinitesimal generator of the stochastic Burgers equation. 178, 1067–1124 (2020)

  26. Hairer, M.: Solving the KPZ equation. Ann. Math. (2) 178(2), 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  27. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  28. Hopf, E.: The Partial Differential Equation \(u_t + uu_x = \mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  29. Hairer, M., Labbé, C.: A simple construction of the continuum parabolic Anderson model on \({\mathbb{R}}^2\). Electron. Commun. Probab. 20(43), 11 (2015)

    MATH  Google Scholar 

  30. Hairer, M., Labbé, C.: Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. (JEMS) 20(4), 1005–1054 (2018)

    Article  MathSciNet  Google Scholar 

  31. Hairer, M., Pardoux, E.: A Wong–Zakai theorem for stochastic PDEs. J. Math. Soc. Jpn. 67(4), 1551–1604 (2015)

    Article  MathSciNet  Google Scholar 

  32. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ. Forum Math. Pi (2018)

  33. Huang, W.: Exponential integrability of Ito’s processes. J. Math. Anal. Appl. 358, 427–433 (2009)

    Article  MathSciNet  Google Scholar 

  34. Hairer, M., Xu, W.: Large-scale limit of interface fluctuation models. Ann. Probab. 47(6), 3478–3550 (2019)

    Article  MathSciNet  Google Scholar 

  35. Hao, Z., Zhang, X., Zhu, R., Zhu, X.: Singular kinetic equations and applications, arXiv:2108.05042 (2021)

  36. Kardar, M., Parisi, G., Zhang, Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  Google Scholar 

  37. Krylov, N.V.: Controlled Diffusion Processes. Springer (1980)

  38. Krylov, N. V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. AMS, Graduate Studies in Mathematics, Vol. 96, (2008)

  39. Ladyzenskaja, O.A., Solonnikov, V.A., UralCeva, N.N.: Linear and quasilinear equations of parabolic type, Monographs. Amer. Math. Soc. (1968)

  40. Martin, J., Perkowski, N.: Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model. Ann. Inst. Henri Poincaré Probab. Stat. 55(4), 2058–2110 (2019)

    Article  MathSciNet  Google Scholar 

  41. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018v1 (2017)

  42. Menoukeu-Pamen, O., Tangpi, L.: Maximum principle for stochastic control of SDEs with measurable drifts. arXiv:2101.06206 (2021)

  43. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45(4), 2398–2476 (2017)

    Article  MathSciNet  Google Scholar 

  44. Mourrat, J.-C., Weber, H.: The dynamic \(\Phi ^4_3\) model comes down from infinity. Commun. Math. Phys. 356(3), 673–753 (2017)

    Article  Google Scholar 

  45. Perkowski, N., Rosati, T.C.: The KPZ equation on the real line. Electron. J. Probab. 24(117), 1–56 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Perkowski, N., Rosati, T. C.: A rough super-Brownian motion. arXiv:1905.05825 (2019)

  47. Quastel, J.: Introduction to KPZ. In Current developments in mathematics, 2011, pp. 125– 194. Int. Press (2012)

  48. Quastel, J., Spohn, H.: The One-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)

    Article  MathSciNet  Google Scholar 

  49. Röckner, M., Wu, B., Zhu, R., Zhu, X.: Stochastic heat equations with values in a manifold via Dirichlet forms. SIAM J. Math. Anal. 52(3), 2237–2274 (2020)

    Article  MathSciNet  Google Scholar 

  50. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library 18. North-Holland Publishing Co (1978)

  51. Triebel, H.: Theory of Function Spaces III. Basel

  52. Walsh, J.B.: An introduction to stochastic partial differential equations. In École d’été de probabilités de Saint-Flour, XIV-1984, volume 1180 of Lecture Notes in Math., pp. 265–439. Springer (1986)

  53. Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer (1999)

  54. Zhang, X.: Stochastic flows and Bismut formulas for stochastic Hamiltonian systems. Stoch. Proc. Appl. 120, 1929–1949 (2010)

    Article  MathSciNet  Google Scholar 

  55. Zhu, R., Zhu, X.: Three-dimensional Navier–Stokes equations driven by space-time white noise. J. Differ. Equ. 259(9), 4443–4508 (2015)

    Article  MathSciNet  Google Scholar 

  56. Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drift. Math. Sb. 93(135), 129–149 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to Nicolas Perkowski for proposing this problem to us and sharing his idea on this problem with us (especially the idea mentioned in Remark 5.4), where we benefit a lot. We also thank Zimo Hao for useful discussions and thank Scott Smith for checking the English of the whole paper. The financial supports in part by National Key R &D Program of China (No. 2020YFA0712700) is greatly acknowledged. X. Zhang is partially supported by NSFC (No. 11731009, 12131019). R.Z. is grateful to the financial supports of the NSFC (No. 11922103). X.Z. the NSFC (No. 12090014, 11688101) and the support by key Lab of Random Complex Structures and Data Science, Youth Innovation Promotion Association (2020003), Chinese Academy of Science. The financial support by the DFG through the CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications” is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongchan Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Uniqueness of paracontrolled solutions

In this subsection we use Hairer and Labbé’s argument [30] to show the uniqueness of paracontrolled solutions. For this aim, we use the following time-dependent exponential weight: for \(\ell \in (0,1)\),

$$\begin{aligned} \mathbf{e}^\ell _t(x):=\exp (-(1+t)\langle x\rangle ^\ell ),\ t\geqslant 0,\ x\in {{\mathbb {R}}}^d. \end{aligned}$$

We can similarly define the Hölder space with weight \(\mathbf{e}^\ell \) (see [45]). For instance,

$$\begin{aligned} \Vert f\Vert _{L^\infty _T{{\mathbf {C}}}^\alpha (\mathbf{e}^\ell )}:=\sup _{t\in [0,T]}\Vert f(t,\cdot )\Vert _{{{\mathbf {C}}}^\alpha (\mathbf{e}^\ell _t)}, \end{aligned}$$

and for \(\alpha \in (0,1)\),

$$\begin{aligned} \Vert f\Vert _{C^\alpha _TL^\infty (\mathbf{e}^\ell )}&:= \sup _{0\leqslant t\leqslant T} \Vert f(t)\mathbf{e}^\ell _t\Vert _{L^\infty } +\sup _{0\leqslant s\ne t\leqslant T} \frac{\Vert f(t)-f(s)\Vert _{L^\infty (\mathbf{e}^\ell _{t\vee s})}}{|t-s|^{\alpha }}. \end{aligned}$$

In particular, for \(\alpha \in (0,2)\), we also set

$$\begin{aligned} {{\mathbb {S}}}^\alpha _T(\mathbf{e}^\ell ):=\Vert f\Vert _{L^\infty _T{{\mathbf {C}}}^\alpha (\mathbf{e}^\ell )}+\Vert f\Vert _{C^{\alpha /2}_TL^\infty (\mathbf{e}^\ell )}. \end{aligned}$$

By [43, Lemma 2.10], for any \(T>0\), there is a \(C=C(T,\ell ,d)>0\) such that for all \(s,t\in [0,T]\) and \(j\geqslant -1\),

$$\begin{aligned} \Vert \Delta _jP_tf\Vert _{L^\infty (\mathbf{e}^\ell _s)}\lesssim \mathrm {e}^{-2^{2j}t}\Vert \Delta _jf\Vert _{L^\infty (\mathbf{e}^\ell _s)}. \end{aligned}$$
(A.1)

Moreover, Lemmas 2.8, 2.10, 2.11 and 2.12 still hold for exponential weight \(\mathbf{e}^\ell _t\) (see [45]). The following result corresponds to Lemma 2.9.

Lemma A.1

Let \(\alpha ,\ell \in (0,1)\), \(\kappa \in (0,(1-\frac{\alpha }{2})\ell )\). For any \(q\in (\frac{1}{1-\alpha /2-\kappa /\ell },\infty ]\) and \(T>0\), there is a constant \(C=C(T, d,\alpha ,\ell ,\theta ,\kappa ,q)>0\) such that

$$\begin{aligned} \Vert {{\mathscr {I}}}f\Vert _{{{\mathbb {S}}}_T^{2-\frac{2}{q}-\frac{2\kappa }{\ell }-\alpha }(\mathbf{e}^\ell )}\lesssim _C \Vert f\Vert _{L^q_T{{\mathbf {C}}}^{-\alpha }(\rho _{\kappa }\mathbf{e}^\ell )}. \end{aligned}$$

Proof

First of all we have the following simple observation:

$$\begin{aligned} \mathbf{e}^\ell _t(x)\lesssim \langle x\rangle ^{-\kappa } \mathbf{e}^\ell _s(x)/|t-s|^{\kappa /\ell },\ \ 0\leqslant s<t<\infty . \end{aligned}$$
(A.2)

Let \(\frac{1}{p}+\frac{1}{q}=1\) and \(t\in (0,T]\). By (A.1) and Hölder’s inequality, we have for \(j\geqslant -1\),

$$\begin{aligned} \Vert \Delta _j{{\mathscr {I}}}f(t)\Vert _{L^\infty (\mathbf{e}^\ell _t)}&\lesssim \int ^t_0\mathrm {e}^{-2^{2j}(t-s)}\Vert \Delta _jf(s)\Vert _{L^\infty (\mathbf{e}^\ell _t)}{\mathord {\mathrm{d}}}s \\ {}&\lesssim \int ^t_0\frac{\mathrm {e}^{-2^{2j}(t-s)}}{|t-s|^{\kappa /\ell }}\Vert \Delta _jf(s)\Vert _{L^\infty (\rho _\kappa \mathbf{e}^\ell _s)}{\mathord {\mathrm{d}}}s \\ {}&\lesssim 2^{\alpha j}\left( \int ^t_0\frac{\mathrm {e}^{-p2^{2j}(t-s)}}{|t-s|^{p\kappa /\ell }}{\mathord {\mathrm{d}}}s\right) ^{1/p} \Vert f\Vert _{L^q_t{{\mathbf {C}}}^{-\alpha }(\rho _\kappa \mathbf{e}^\ell )}\\&\lesssim 2^{-(\frac{2}{p}-\frac{2\kappa }{\ell }-\alpha ) j}\Vert f\Vert _{L^q_t{{\mathbf {C}}}^{-\alpha }(\rho _\kappa \mathbf{e}^\ell )}, \end{aligned}$$

which in turn gives that

$$\begin{aligned} \Vert {{\mathscr {I}}}f\Vert _{L^\infty _T{{\mathbf {C}}}^{2-\frac{2}{q}-\frac{2\kappa }{\ell }-\alpha }(\mathbf{e}^\ell )} \lesssim \Vert f\Vert _{L^q_T{{\mathbf {C}}}^{-\alpha }(\rho _{\kappa }\mathbf{e}^\ell )}. \end{aligned}$$
(A.3)

On the other hand, for \(0\leqslant t_1<t_2\leqslant T\), we have

$$\begin{aligned} \Vert {{\mathscr {I}}}f(t_2)- {{\mathscr {I}}}f(t_1)\Vert _{L^\infty (\mathbf{e}^\ell _{t_2})}&\leqslant \Vert (P_{t_2-t_1}-I){{\mathscr {I}}}f(t_1)\Vert _{L^\infty (\mathbf{e}^\ell _{t_2})}\\&\quad +\left\| \int _{t_1}^{t_2}P_{t_2-s}f(s) {\mathord {\mathrm{d}}}s\right\| _{L^\infty (\mathbf{e}^\ell _{t_2})}=:I_1+I_2. \end{aligned}$$

For \(I_1\), by (2.10) and (A.3) we have

$$\begin{aligned} I_1&\lesssim (t_2-t_1)^{1-\frac{\alpha }{2}-\frac{1}{q}- \frac{\kappa }{\ell }} \Vert {{\mathscr {I}}}f(t_1)\Vert _{{{\mathbf {C}}}^{2-\alpha -\frac{2}{q}- \frac{2\kappa }{\ell }}(\mathbf{e}^\ell _{t_2})} \\ {}&\lesssim (t_2-t_1)^{1-\frac{\alpha }{2}-\frac{1}{q}- \frac{\kappa }{\ell }}\Vert f\Vert _{L^q_T{{\mathbf {C}}}^{-\alpha }(\rho _{\kappa }{} \mathbf{e}^\ell )}. \end{aligned}$$

For \(I_2\), by (2.8), (A.2) and Hölder’s inequality, we have

$$\begin{aligned} I_2&\lesssim \int _{t_1}^{t_2}(t_2-s)^{-\frac{\alpha }{2}}\Vert f(s)\Vert _{{{\mathbf {C}}}^{-\alpha }(\mathbf{e}^\ell _{t_2})}{\mathord {\mathrm{d}}}s \\ {}&\lesssim \int _{t_1}^{t_2}(t_2-s)^{-\frac{\alpha }{2}-\frac{\kappa }{\ell }}\Vert f(s)\Vert _{{{\mathbf {C}}}^{-\alpha }(\rho _\kappa \mathbf{e}^\ell _s)}{\mathord {\mathrm{d}}}s \\ {}&\lesssim (t_2-t_1)^{1-\frac{\alpha }{2}-\frac{1}{q}- \frac{\kappa }{\ell }}\Vert f\Vert _{L^q_T{{\mathbf {C}}}^{-\alpha }(\rho _{\kappa }{} \mathbf{e}^\ell )}. \end{aligned}$$

Combining the above estimates, we obtain the desired estimate. \(\square \)

Now we consider the following linear equation:

$$\begin{aligned} {{\mathscr {L}}}u=(b+{\bar{b}})\cdot \nabla u+hu,\ \ u(0)\equiv 0, \end{aligned}$$
(A.4)

where \(b\in \cap _{T>0}{{\mathbb {B}}}^\alpha _T(\rho _\kappa )\) and \({\bar{b}},h\in \cap _{T>0}L^\infty _T(\rho _\eta )\). Let

$$\begin{aligned} (u,u^\sharp )\in \cap _{T>0}{{\mathbb {S}}}^{2-\alpha }_T(\rho _\eta )\times {{\mathbb {S}}}^{3-2\alpha }_T(\rho _{2\eta }) \end{aligned}$$

be the paracontrolled solution of PDE (A.4). That is,

$$\begin{aligned} u=\nabla u\prec \!\!\!\prec {{\mathscr {I}}}b+u^\sharp , \end{aligned}$$
(A.5)

with \(u^\sharp \) solving the following PDE in weak sense

$$\begin{aligned} {{\mathscr {L}}}u^\sharp&=\nabla u\prec b-\nabla u\prec \!\!\!\prec b+\nabla u\succ b+b\circ \nabla u\nonumber \\ {}&\quad +{\bar{b}}\cdot \nabla u+hu-[{{\mathscr {L}}}, \nabla u\prec \!\!\!\prec ]{{\mathscr {I}}}b, \end{aligned}$$
(A.6)

where

$$\begin{aligned} b\circ \nabla u&=b\circ (\nabla ^2 u\prec {{\mathscr {I}}}b)+(b\circ \nabla {{\mathscr {I}}}b)\cdot \nabla u+\text {com}\nonumber \\&\quad +\text {com}_1+b\circ \nabla u^\sharp , \end{aligned}$$
(A.7)

and

$$\begin{aligned} \text {com}_1:=b\circ \nabla [\nabla u\prec \!\!\!\prec {{\mathscr {I}}}b-\nabla u\prec {{\mathscr {I}}}b] \end{aligned}$$

and

$$\begin{aligned} \text {com}:=\mathrm {com}(\nabla u, \nabla {{\mathscr {I}}}b,b). \end{aligned}$$

Theorem A.2

Let \(\ell \in (0,1)\) and \(\kappa \in (0,\tfrac{(2-3\alpha )\ell }{6})\), \(\eta \in (0,\frac{(1-\alpha )\ell }{2})\). Suppose that

$$\begin{aligned}&b\in \cap _{T>0}{{\mathbb {B}}}^\alpha _T(\rho _\kappa ),\ \ {\bar{b}},h\in \cap _{T>0}{{\mathbb {L}}}^\infty _T(\rho _\eta ),\\&\beta \in (\alpha ,(2-2\alpha -\tfrac{6\kappa }{\ell })\wedge (1-\tfrac{2\eta }{\ell })),\ \ \gamma \in (\alpha ,2-2\alpha -\tfrac{4\kappa }{\ell }). \end{aligned}$$

The unique paracontrolled solution to PDE (A.4) in the sense of Definition 3.1 with

$$\begin{aligned} (u,u^\sharp )\in {{\mathbb {S}}}_T^{\gamma +\alpha }(\mathbf{e}^\ell )\times L_T^\infty {{\mathbf {C}}}^{\beta +1}(\mathbf{e}^\ell ) \end{aligned}$$

is zero.

Proof

Let \(T>0\). Choose q large enough such that

$$\begin{aligned}\alpha<\gamma \leqslant 2-2\alpha -\tfrac{2}{q}-\tfrac{4\kappa }{\ell },\ \ \alpha <\beta \leqslant (2-2\alpha -\tfrac{2}{q}-\tfrac{6\kappa }{\ell })\wedge (1-\tfrac{2\eta }{\ell }). \end{aligned}$$

First of all, by Lemmas A.1 and 2.10, we have

$$\begin{aligned} \begin{aligned}&\Vert u\Vert _{{{\mathbb {S}}}_T^{2-\alpha -\frac{2}{q}-\frac{4\kappa }{\ell }}(\mathbf{e}^\ell )} \\ {}&\lesssim \Vert b\prec \nabla u+b\succ \nabla u+b\circ \nabla u\Vert _{L^q_T{{\mathbf {C}}}^{-\alpha }(\rho _{2\kappa }{} \mathbf{e}^\ell )}+\Vert {\bar{b}}\cdot \nabla u+hu\Vert _{L_T^qL^\infty (\rho _{\eta }{} \mathbf{e}^\ell )} \\ {}&\lesssim \Vert b\Vert _{L^\infty _T{{\mathbf {C}}}^{-\alpha }(\rho _\kappa )}\Vert \nabla u\Vert _{L^q_TL^\infty (\mathbf{e}^\ell )} +\Vert b\circ \nabla u\Vert _{L^q_T{{\mathbf {C}}}^{-\alpha }(\rho _{2\kappa }{} \mathbf{e}^\ell )} \\ {}&+\Vert {\bar{b}}\Vert _{{{\mathbb {L}}}_T^\infty (\rho _\eta )}\Vert \nabla u\Vert _{L_T^qL^\infty (\mathbf{e}^\ell )}+\Vert h\Vert _{{{\mathbb {L}}}_T^\infty (\rho _\eta )}\Vert u\Vert _{L_T^qL^\infty (\mathbf{e}^\ell )}, \end{aligned} \end{aligned}$$

and by the corresponding version of Lemma 2.12 for exponential weight \(\mathbf{e}^\ell \) (see [45, Lemma 2.10]),

$$\begin{aligned} \begin{aligned} \Vert u^\sharp \Vert _{L_T^\infty {{\mathbf {C}}}^{\beta +1}(\mathbf{e}^\ell )}&\lesssim \Vert \nabla u\prec b-\nabla u\prec \!\!\!\prec b+\nabla u\succ b-[{{\mathscr {L}}}, \nabla u\prec \!\!\!\prec ]{{\mathscr {I}}}b\Vert _{L^\infty _T{{\mathbf {C}}}^{1-2\alpha -\frac{2}{q}-\frac{4\kappa }{\ell }}(\rho _\kappa \mathbf{e}^\ell )}\\&\quad +\Vert b\circ \nabla u\Vert _{L^q_T{{\mathbf {C}}}^{1-2\alpha }(\rho _{2\kappa }\mathbf{e}^\ell )}+\Vert {\bar{b}}\cdot \nabla u+hu\Vert _{{{\mathbb {L}}}_T^\infty (\rho _{\eta }\mathbf{e}^\ell )} \\&\lesssim \Vert b\circ \nabla u\Vert _{L^q_T{{\mathbf {C}}}^{1-2\alpha }(\rho _{2\kappa }\mathbf{e}^\ell )}+\Vert u\Vert _{{{\mathbb {S}}}_T^{2-\alpha -\frac{2}{q}-\frac{4\kappa }{\ell }}(\mathbf{e}^\ell )} \\ {}&\quad +\Vert {\bar{b}}\Vert _{{{\mathbb {L}}}_T^\infty (\rho _\eta )}\Vert \nabla u\Vert _{{{\mathbb {L}}}_T^\infty (\mathbf{e}^\ell )}+\Vert h\Vert _{{{\mathbb {L}}}_T^\infty (\rho _\eta )}\Vert u\Vert _{{{\mathbb {L}}}_T^\infty (\mathbf{e}^\ell )} \\ {}&\lesssim \Vert u\Vert _{{{\mathbb {S}}}_T^{2-\alpha -\frac{2}{q}-\frac{4\kappa }{\ell }}(\mathbf{e}^\ell )}+\Vert b\circ \nabla u\Vert _{L^q_T{{\mathbf {C}}}^{1-2\alpha }(\rho _{2\kappa }{} \mathbf{e}^\ell )}. \end{aligned}\end{aligned}$$

Moreover, by Lemma 3.3 with \((\rho ,{\bar{\rho }})=(\rho _\kappa ,\mathbf{e}^\ell _t)\),

$$\begin{aligned} \Vert (b\circ \nabla u)(t)\Vert _{{{\mathbf {C}}}^{1-2\alpha }(\rho _{2\kappa }\mathbf{e}^\ell _t)} \lesssim \Vert u\Vert _{{{\mathbb {S}}}^{\gamma +\alpha }_t(\mathbf{e}^\ell )}+\Vert u^\sharp (t)\Vert _{{{\mathbf {C}}}^{\beta +1}(\rho _\kappa \mathbf{e}^\ell _t)}. \end{aligned}$$

Combining the above three estimates, we obtain

$$\begin{aligned}&\Vert u\Vert _{{{\mathbb {S}}}_T^{\gamma +\alpha }(\mathbf{e}^\ell )}+\Vert u^\sharp \Vert _{L_T^\infty {{\mathbf {C}}}^{\beta +1}(\mathbf{e}^\ell )} \\ {}&\lesssim \Vert \nabla u\Vert _{L^q_TL^\infty (\mathbf{e}^\ell )} +\Vert u\Vert _{L_T^qL^\infty (\mathbf{e}^\ell )}+\Vert b\circ \nabla u\Vert _{L^q_T{{\mathbf {C}}}^{1-2\alpha }(\rho _{2\kappa }{} \mathbf{e}^\ell )}\\&\lesssim \left( \int ^T_0\Big (\Vert u\Vert ^q_{{{\mathbb {S}}}^{\gamma +\alpha }_t(\mathbf{e}^\ell )}+\Vert u^\sharp (t)\Vert ^q_{{{\mathbf {C}}}^{\beta +1}(\rho _\kappa \mathbf{e}^\ell _t)}\Big ){\mathord {\mathrm{d}}}t\right) ^{1/q}, \end{aligned}$$

which implies \(u\equiv 0\) by Gronwall’s inequality. \(\square \)

Appendix B: Exponential moment estimates for SDEs

In this section we consider the following SDE:

$$\begin{aligned} {\mathord {\mathrm{d}}}X_t=b(t,X_t){\mathord {\mathrm{d}}}t+\sigma (t,X_t){\mathord {\mathrm{d}}}W_t, \ X_0=x. \end{aligned}$$

We have the following exponential moment estimates for \(X_t\).

Lemma B.1

Suppose that \(\sigma \) is bounded and b is linear growth. Then for any \(\alpha \in [0,2)\) and \(T, \gamma >0\), there is a constant \(C>0\) such that for all \(x\in {{\mathbb {R}}}^d\),

$$\begin{aligned} {{\mathbb {E}}}\mathrm {e}^{\gamma \sup _{t\in [0,T]} \langle X_t\rangle ^\alpha }\leqslant C\mathrm {e}^{\langle x\rangle ^\alpha }. \end{aligned}$$

Proof

Let \(\beta \in (\alpha ,2)\). Recall \(\langle x\rangle ^\beta =(1+|x|^2)^{\beta /2}\). By Itô’s formula, we have

$$\begin{aligned} M_t:=\mathrm {e}^{-\lambda t}\langle X_t\rangle ^\beta&=\langle x\rangle ^\beta +\int ^t_0 \eta _s{\mathord {\mathrm{d}}}s+\int ^t_0\xi _s{\mathord {\mathrm{d}}}W_s, \end{aligned}$$

where

$$\begin{aligned} \eta _s&:=\mathrm {e}^{-\lambda s}\beta \Big [X_s\cdot b(s,X_s)+ \mathrm {tr}(\sigma \sigma ^*)(s,X_s)/2\Big ]\langle X_s\rangle ^{\beta -2}\\&\quad +\beta (\tfrac{\beta }{2}-1)\mathrm {e}^{-\lambda s}|\sigma ^*(s,X_s) X_s|^2 \langle X_s\rangle ^{\beta -4}-\lambda \mathrm {e}^{-\lambda s} \langle X_s\rangle ^\beta , \end{aligned}$$

and

$$\begin{aligned} \xi _s:=\beta \mathrm {e}^{-\lambda s}\sigma ^*(s,X_s)X_s\langle X_s\rangle ^{\beta -2}. \end{aligned}$$

By the linear growth of b and the boundedness of \(\sigma \), there is a \(\lambda \) large enough so that

$$\begin{aligned} \eta _s\leqslant 0 \end{aligned}$$

and

$$\begin{aligned} |\xi _s|^2\leqslant C\mathrm {e}^{-\lambda s}\langle X_s\rangle ^{2(\beta -1)}\leqslant C M^{2-\frac{2}{\beta }}_s. \end{aligned}$$

Now by [33, Theorem 1.1], we obtain the desired estimate. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhu, R. & Zhu, X. Singular HJB equations with applications to KPZ on the real line. Probab. Theory Relat. Fields 183, 789–869 (2022). https://doi.org/10.1007/s00440-022-01137-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-022-01137-w

Keywords

Mathematics Subject Classification

Navigation