Skip to main content
Log in

Persistence of hubs in growing random networks

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We consider models of evolving networks \(\left\{ {\mathcal {G}}_n:n\ge 0\right\} \) modulated by two parameters: an attachment function \(f:{\mathbb {N}}_0 \rightarrow {\mathbb {R}}_+\) and a (possibly random) attachment sequence \(\left\{ m_i:i\ge 1\right\} \). Starting with a single vertex, at each discrete step \(i\ge 1\) a new vertex \(v_i\) enters the system with \(m_i\ge 1\) edges which it sequentially connects to a pre-existing vertex \(v\in {\mathcal {G}}_{i-1}\) with probability proportional to \(f(\text{ degree }(v))\). We consider the problem of emergence of persistent hubs: existence of a finite (a.s.) time \(n^*\) such that for all \(n\ge n^*\) the identity of the maximal degree vertex (or in general the K largest degree vertices for \(K\ge 1\)) does not change. We obtain general conditions on f and \(\left\{ m_i:i\ge 1\right\} \) under which a persistent hub emerges, and also those under which a persistent hub fails to emerge. In the case of lack of persistence, for the specific case of trees (\(m_i\equiv 1\) for all i), we derive asymptotics for the maximal degree and the index of the maximal deg ree vertex (time at which the vertex with current maximal degree entered the system) to understand the movement of the maximal degree vertex as the network evolves. A key role in the analysis is played by an inverse rate weighted martingale constructed from a continuous time embedding of the discrete time model. Asymptotics for this martingale, including concentration inequalities and moderate deviations form the technical foundations for the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addario-Berry, L., Eslava, L.: High degrees in random recursive trees. Random Struct. Algorithms 52(4), 560–575 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addario-Berry, L., Bhamidi, S., Sen, S: A probabilistic approach to the leader problem in random graphs. arXiv preprint arXiv:1703.09908, (2017)

  3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Athreya, K.B., Karlin, S.: Embedding of urn schemes into continuous time Markov branching processes and related limit theorems. Ann. Math. Stat. 39(6), 1801–1817 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Athreya, K. B., Ney, P. E: Branching processes. Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 196

  6. Banerjee, S., Bhamidi, S: Root finding algorithms and persistence of Jordan centrality in growing random trees. arXiv preprint arXiv:2006.15609, (2020)

  7. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhamidi, S: Universal techniques to analyze preferential attachment trees: global and local analysis. In preparation. Version August, 19, 2007

  9. Billingsley, P.: Convergence of Probability Measures. John Wiley and Sons, New York (2013)

    MATH  Google Scholar 

  10. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, vol. 27. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. Bollobás, B.: Random Graphs, vol. 73. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  12. Borgatti, S.P.: Centrality and network flow. Soc. Networks 27(1), 55–71 (2005)

    Article  MathSciNet  Google Scholar 

  13. Bubeck, S., Devroye, L., Lugosi, G: Finding adam in random growing trees. arXiv preprint arXiv:1411.3317, (2014)

  14. Bubeck, S., Mossel, E., Rácz, M.Z.: On the influence of the seed graph in the preferential attachment model. IEEE Trans. Network Sci. Eng. 2(1), 30–39 (2015)

    Article  MathSciNet  Google Scholar 

  15. Bubeck, S., Eldan, R., Mossel, E., Rácz, M.Z.: From trees to seeds: on the inference of the seed from large trees in the uniform attachment model. Bernoulli 23(4A), 2887–2916 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Curien, N., Duquesne, T., Kortchemski, I., Manolescu, I.: Scaling limits and influence of the seed graph in preferential attachment trees. J. Polytech. Math. 2, 1–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dembo, A., Zeitouni, O: Large deviations techniques and applications 1998. Appl. Math., 38, (2011)

  18. Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14, 1222–1267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dereich, S., Mailler, C., Mörters, P.: Nonextensive condensation in reinforced branching processes. Ann. Appl. Probab. 27(4), 2539–2568 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Devroye, L., Lu, J.: The strong convergence of maximal degrees in uniform random recursive trees and dags. Random Struct. Algorithms 7(1), 1–14 (1995)

    Article  MathSciNet  Google Scholar 

  21. Devroye, L, Reddad, T: On the discovery of the seed in uniform attachment trees. arXiv preprint arXiv:1810.00969, (2018)

  22. Durrett, R.: Random Graph Dynamics, vol. 20. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  23. Eslava, L: Depth of vertices with high degree in random recursive trees. arXiv preprint arXiv:1611.07466, (2016)

  24. Freeman, L. C: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41, (1977)

  25. Galashin, P.: Existence of a persistent hub in the convex preferential attachment model. arXiv preprint arXiv:1310.7513, (2013)

  26. Goh, W., Schmutz, E.: Limit distribution for the maximum degree of a random recursive tree. J. Comput. Appl. Math. 142(1), 61–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  28. Jagers, P: Branching processes with biological applications. Wiley-Interscience [John Wiley and Sons], London-New York-Sydney, 1975. ISBN 0-471-43652-6. Wiley Series in Probability and Mathematical Statistics—Applied Probability and Statistics

  29. Jagers, P., Nerman, O.: The growth and composition of branching populations. Adv. Appl. Probab. 16(2), 221–259 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jog, V., Loh, P.-L.: Analysis of centrality in sublinear preferential attachment trees via the Crump-Mode-Jagers branching process. IEEE Trans. Network Sci. Eng. 4(1), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  31. Jog, V., Loh, P.-L.: Persistence of centrality in random growing trees. Random Struct. Algorithms 52(1), 136–157 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jordan, C.: Sur les assemblages de lignes. Journal für die reine und angewandte Mathematik 1869(70), 185–190 (1869)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kolmogorov, A.: Uber das gesetz des iterieten logaritmus. Math. Ann 99, 309–319 (1929)

    Article  Google Scholar 

  34. Liptser, R., Shiryayev, A.N: Theory of Martingales, volume 49. Springer Science and Business Media, (2012)

  35. Łuczak, T.: Component behavior near the critical point of the random graph process. Random Struct. Algorithms 1(3), 287–310 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lugosi, G., Pereira, A.S.: Finding the seed of uniform attachment trees. Electron. J. Probab. 24, (2019)

  37. Masuda, N., Lambiotte, R.: A Guidance to Temporal Networks. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  38. Móri, T.F.: The maximum degree of the Barabási-Albert random tree. Combin. Probab. Comput. 14(3), 339–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Navlakha, S., Kingsford, C.: Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7(4), e10011119 (2011)

    Article  MathSciNet  Google Scholar 

  40. Nerman, O.: On the convergence of supercritical general (CMJ) branching processes. Probab. Theory Related Fields 57(3), 365–395 (1981)

    MathSciNet  MATH  Google Scholar 

  41. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  42. Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Networks 27(1), 39–54 (2005)

    Article  Google Scholar 

  43. Oliveira, R., Spencer, J.: Connectivity transitions in networks with super-linear preferential attachment. Internet Math. 2(2), 121–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Peköz, E.A., Röllin, A., Ross, N.: Degree asymptotics with rates for preferential attachment random graphs. Ann. Appl. Probab. 23(3), 1188–1218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rudas, A., Tóth, B., Valkó, B.: Random trees and general branching processes. Random Struct. Algorithms 31(2), 186–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shah, D., Zaman, T.: Rumors in a network: Who’s the culprit? IEEE Trans. Inf. Theory 57(8), 5163–5181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shah, D., Zaman, T: Rumor centrality: a universal source detector. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement and Modeling of Computer Systems, pages 199–210, (2012)

  48. Van Der Hofstad, R.: Random Graphs and Complex Networks. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  49. Whitt, W.: Proofs of the martingale FCLT. Probab. Surv. 4, 268–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Young, J.-G., Hébert-Dufresne, L., Laurence, E., Murphy, C., St-Onge, G., Desrosiers, P: Network archaeology: phase transition in the recoverability of network history. arXiv preprint arXiv:1803.09191, (2018)

Download references

Acknowledgements

Bhamidi was partially supported by NSF grants DMS-1613072, DMS-1606839 and ARO grant W911NF-17-1-0010. Banerjee was partially supported by a Junior Faculty Development Award made by UNC, Chapel Hill. We acknowledge valuable feedback of an associate editor and an anonymous referee which led to major improvements in the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Bhamidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Verifying Assumptions C1, C2 and C3 for classes I and II in Remark 4.1

Appendix A. Verifying Assumptions C1, C2 and C3 for classes I and II in Remark 4.1

Class I As \(f_r\) is positive and regularly varying with index \(\alpha \in [0, 1/2)\), taking \(\epsilon \in (0, \alpha )\) such that \(2\alpha + \epsilon < 1\) and using [10, Theorem 1.5.6], we obtain

$$\begin{aligned} \lim _{k \rightarrow \infty }\frac{f_r(k)}{k^{2\alpha + \epsilon }} = 0. \end{aligned}$$

Recalling \(f = f_rf_b \le b_2f_r\), we conclude \(\Phi _2(\infty ) = \infty \), and hence, Assumption C1 holds.

Define \(\Phi _{i,r} (t) := \int _0^t \frac{1}{f^i_r(z)}dz, \ t \ge 0, i=1,2\), and \({\mathcal {K}}_r(\cdot ) := \Phi _{2,r} \circ \Phi _{1,r}^{-1}(\cdot )\). Note that, using a simple u-substitution,

$$\begin{aligned} {\mathcal {K}}(t) := \Phi _2 \circ \Phi _1^{-1}(t) = \int _0^t \frac{1}{{\bar{f}}(z)}dz \end{aligned}$$

where \({\bar{f}}(\cdot ) := f \circ \Phi _1^{-1}(\cdot )\). Thus, for any \(\delta >0, t \ge 0\), recalling \(f \ge b_1 f_r\),

$$\begin{aligned} {\mathcal {K}}((1+\delta )t) = {\mathcal {K}}(t) + \int _t^{(1+\delta )t} \frac{1}{{\bar{f}}(z)}dz \le {\mathcal {K}}(t) + \frac{1}{b_1}\int _t^{(1+\delta )t} \frac{1}{f_r\circ \Phi _1^{-1}(z)}dz.\nonumber \\ \end{aligned}$$
(A.1)

Further, note that \( \frac{1}{b_2} \Phi _{1,r}(s) \le \Phi _1(s) \le \frac{1}{b_1} \Phi _{1,r}(s) \) for \(s \ge 0\), and hence, \(\Phi ^{-1}_{1,r}(b_1s) \le \Phi ^{-1}_1(s) \le \Phi ^{-1}_{1,r}(b_2s), s \ge 0\). Thus,

$$\begin{aligned} 1 \le \frac{\Phi ^{-1}_1(s)}{\Phi ^{-1}_{1,r}(b_1s)} \le \frac{\Phi ^{-1}_{1,r}(b_2s)}{\Phi ^{-1}_{1,r}(b_1s)}, \ s \ge 0. \end{aligned}$$
(A.2)

By Theorem 1.5.12 of Bingham et al. [10], \(\Phi ^{-1}_{1,r}(\cdot )\) is regularly varying with index \((1-\alpha )^{-1}\) and hence,

$$\begin{aligned} \lim _{s \rightarrow \infty } \frac{\Phi ^{-1}_{1,r}(b_2s)}{\Phi ^{-1}_{1,r}(b_1s)} = \left( \frac{b_2}{b_1}\right) ^{1/(1-\alpha )}. \end{aligned}$$

Using this in (A.2), we obtain \(s_0>0\) such that for all \(s \ge s_0\),

$$\begin{aligned} 1 \le \frac{\Phi ^{-1}_1(s)}{\Phi ^{-1}_{1,r}(b_1s)} \le 2 \left( \frac{b_2}{b_1}\right) ^{1/(1-\alpha )}. \end{aligned}$$
(A.3)

By Theorem 1.5.2 of [10], there exists \(s_1 \ge s_0\) such that for all \(s \ge s_1\),

$$\begin{aligned} \left| \frac{f_r(x\Phi ^{-1}_{1,r}(b_1s))}{f_r(\Phi ^{-1}_{1,r}(b_1s))} - x^{\alpha }\right| < \frac{x^{\alpha }}{2} \ \text { for all } \ x \in \left[ 1, 2 \left( \frac{b_2}{b_1}\right) ^{1/(1-\alpha )}\right] . \end{aligned}$$

In particular, by (A.3), for all \(s \ge s_1\),

$$\begin{aligned} \frac{1}{2} \le \frac{f_r(\Phi ^{-1}_{1}(s))}{f_r(\Phi ^{-1}_{1,r}(b_1s))} \le \frac{3}{2}\left[ 2\left( \frac{b_2}{b_1}\right) ^{1/(1-\alpha )}\right] ^{\alpha } =: b(\alpha ). \end{aligned}$$
(A.4)

From (A.1) and (A.4), for \(t \ge s_1\),

$$\begin{aligned} {\mathcal {K}}((1+\delta )t)&\le {\mathcal {K}}(t) + \frac{2}{b_1}\int _t^{(1+\delta )t} \frac{1}{f_r\circ \Phi _{1,r}^{-1}(b_1z)}dz\nonumber \\&= {\mathcal {K}}(t) + \frac{2}{b_1^2}\int _{b_1t}^{b_1(1+\delta )t} \frac{1}{f_r\circ \Phi _{1,r}^{-1}(z)}dz = {\mathcal {K}}(t) \nonumber \\&+ \frac{2\left( {\mathcal {K}}_r(b_1(1+\delta )t) - {\mathcal {K}}_r(b_1 t)\right) }{b_1^2}. \end{aligned}$$
(A.5)

Moreover, recalling \(f \le b_2 f_r\) and again using (A.4), for \(t \ge s_1\),

$$\begin{aligned} {\mathcal {K}}(t) \ge \frac{1}{b_2}\int _{s_1}^{t} \frac{1}{f_r\circ \Phi _1^{-1}(z)}dz\ge & {} \frac{1}{b_2 b(\alpha )}\int _{s_1}^{t}\frac{1}{f_r\circ \Phi _{1,r}^{-1}(b_1z)}dz\nonumber \\= & {} \frac{{\mathcal {K}}_r(b_1 t) - {\mathcal {K}}_r(b_1s_1)}{b_1 b_2 b(\alpha )}. \end{aligned}$$
(A.6)

Hence, by (A.5) and (A.6),

$$\begin{aligned} 1 \le \limsup _{t \rightarrow \infty } \frac{{\mathcal {K}}((1+\delta )t)}{{\mathcal {K}}(t)} \le 1 + \frac{2b_2b(\alpha )}{b_1}\limsup _{t \rightarrow \infty }\left( \frac{{\mathcal {K}}_r(b_1(1+\delta )t)}{{\mathcal {K}}_r(b_1t)} - 1\right) . \end{aligned}$$
(A.7)

By Proposition 1.5.8, Theorem 1.5.7 and Theorem 1.5.12 of [10], \({\mathcal {K}}_r(\cdot )\) is regularly varying with index \(\theta _{\alpha } := \frac{1-2\alpha }{1-\alpha }\). Using this observation in (A.7), we conclude that for any \(\delta >0\),

$$\begin{aligned} 1 \le \limsup _{t \rightarrow \infty } \frac{{\mathcal {K}}((1+\delta )t)}{{\mathcal {K}}(t)} \le 1 + \frac{2b_2b(\alpha )}{b_1}\left( (1+\delta )^{\theta _{\alpha }} - 1\right) . \end{aligned}$$
(A.8)

Taking a limit as \(\delta \rightarrow 0\) in (A.8) shows that Assumption C2 is satisfied. Taking \(\delta = 2\) in (A.8) shows that Assumption C3 is satisfied with \(D = 2\left[ 1 + \frac{2b_2b(\alpha )}{b_1}\left( 3^{\theta _{\alpha }} - 1\right) \right] \) and some \(t'>0\).

Class II From the assumptions \(\sum _{k=0}^{\infty }\frac{1}{g^2(k)} = \infty \) and \(\lim _{k \rightarrow \infty } h(k)/g(k) = 0\), it readily follows that \(\Phi _2(\infty ) = \infty \), and hence, Assumption C1 holds. To verify Assumptions C2 and C3, extend gh as f to all of \([0, \infty )\). Note that for any \(\delta \ge 0\),

$$\begin{aligned} {\mathcal {K}}((1+\delta )t) = \int _0^{\Phi ^{-1}_1((1+\delta )t)}\frac{1}{f^2(z)}dz = (1+\delta )\int _0^t\frac{1}{f \circ \Phi ^{-1}_1((1+\delta )u)}du \nonumber \\ \end{aligned}$$
(A.9)

where the last step follows by a u-substitution with \(u= \Phi _1(z)/(1+\delta )\).

Take any \(\delta >0\). As \(h(\cdot )\) is non-negative, \(g(t) \le f(t)\) for all \(t \ge 0\). Moreover, as \(\lim _{t \rightarrow \infty } h(t)/g(t) = 0\) we obtain \(t_{\delta }>0\) such that \(f(t) \le (1+\delta )g(t)\) for all \(t \ge t_{\delta }\). Hence, by (A.9), for all \(t \ge \Phi _1(t_{\delta })\),

$$\begin{aligned} {\mathcal {K}}((1+\delta )t)&\le (1+\delta )\int _0^t\frac{1}{g \circ \Phi ^{-1}_1((1+\delta )u)}du \le (1+\delta )\int _0^t\frac{1}{g \circ \Phi ^{-1}_1(u)}du\\&\le (1+\delta )\int _0^{\Phi _1(t_{\delta })}\frac{1}{g \circ \Phi ^{-1}_1(u)}du + (1+\delta )^2\int _{\Phi _1(t_{\delta })}^t\frac{1}{f \circ \Phi ^{-1}_1(u)}du\\&\le (1+\delta )\int _0^{\Phi _1(t_{\delta })}\frac{1}{g \circ \Phi ^{-1}_1(u)}du + (1+\delta )^2\int _{0}^t\frac{1}{f \circ \Phi ^{-1}_1(u)}du\\&= (1+\delta )\int _0^{\Phi _1(t_{\delta })}\frac{1}{g \circ \Phi ^{-1}_1(u)}du + (1+\delta )^2{\mathcal {K}}(t). \end{aligned}$$

Hence, for any \(\delta >0\),

$$\begin{aligned} \limsup _{t \rightarrow \infty } \frac{{\mathcal {K}}((1+\delta )t}{{\mathcal {K}}(t)} \le (1+\delta )^2. \end{aligned}$$

Assumptions C2 and C3 follow from this by respectively taking \(\delta \rightarrow 0\) and \(\delta = 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Bhamidi, S. Persistence of hubs in growing random networks. Probab. Theory Relat. Fields 180, 891–953 (2021). https://doi.org/10.1007/s00440-021-01066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01066-0

Keywords

Mathematics Subject Classification

Navigation