Skip to main content
Log in

Cones generated by random points on half-spheres and convex hulls of Poisson point processes

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Let \(U_1,U_2,\ldots \) be random points sampled uniformly and independently from the d-dimensional upper half-sphere. We show that, as \(n\rightarrow \infty \), the f-vector of the \((d+1)\)-dimensional convex cone \(C_n\) generated by \(U_1,\ldots ,U_n\) weakly converges to a certain limiting random vector, without any normalization. We also show convergence of all moments of the f-vector of \(C_n\) and identify the limiting constants for the expectations. We prove that the expected Grassmann angles of \(C_n\) can be expressed through the expected f-vector. This yields convergence of expected Grassmann angles and conic intrinsic volumes and answers thereby a question of Bárány et al. (Random Struct Algorithms 50(1):3–22, 2017. https://doi.org/10.1002/rsa.20644). Our approach is based on the observation that the random cone \(C_n\) weakly converges, after a suitable rescaling, to a random cone whose intersection with the tangent hyperplane of the half-sphere at its north pole is the convex hull of the Poisson point process with power-law intensity function proportional to \(\Vert x\Vert ^{-(d+\gamma )}\), where \(\gamma =1\). We compute the expected number of facets, the expected intrinsic volumes and the expected T-functional of this random convex hull for arbitrary \(\gamma >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amelunxen, D., Lotz, M.: Intrinsic volumes of polyhedral cones: a combinatorial perspective. Discrete Comput. Geom. 58(2), 371–409 (2017)

    Article  MathSciNet  Google Scholar 

  2. Amelunxen, D., Lotz, M., McCoy, M., Tropp, J.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3, 224–294 (2014)

    Article  MathSciNet  Google Scholar 

  3. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Volume 137 of Graduate Texts in Mathematics. Springer, New York (1992). https://doi.org/10.1007/b97238

    Book  MATH  Google Scholar 

  4. Bárány, I.: Intrinsic volumes and \(f\)-vectors of random polytopes. Math. Ann. 285(4), 671–699 (1989). https://doi.org/10.1007/BF01452053

    Article  MathSciNet  MATH  Google Scholar 

  5. Bárány, I., Hug, D., Reitzner, M., Schneider, R.: Random points in halfspheres. Random Struct. Algorithms 50(1), 3–22 (2017). https://doi.org/10.1002/rsa.20644

    Article  MathSciNet  MATH  Google Scholar 

  6. Besau, F., Werner, E.M.: The spherical convex floating body. Adv. Math. 301, 867–901 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bonnet, G., Grote, J., Temesvari, D., Thäle, C., Turchi, N., Wespi, F.: Monotonicity of facet numbers of random convex hulls. J. Math. Anal. Appl. 455(2), 1351–1364 (2017)

    Article  MathSciNet  Google Scholar 

  8. Buchta, C.: An identity relating moments of functionals of convex hulls. Discrete Comput. Geom. 33(1), 125–142 (2005). https://doi.org/10.1007/s00454-004-1109-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Carnal, H.: Die konvexe Hülle von n rotations-symmetrisch verteilten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 15, 168–176 (1970). https://doi.org/10.1007/BF00531885

    Article  MATH  Google Scholar 

  10. Cover, T.M., Efron, B.: Geometrical probability and random points on a hypersphere. Ann. Math. Stat. 38, 213–220 (1967). https://doi.org/10.1214/aoms/1177699073

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, R., Mulrow, E., Resnick, S.: The convex hull of a random sample in \({{ R}}^2\). Commun. Stat. Stoch. Models 3(1), 1–27 (1987)

    Article  Google Scholar 

  12. Efron, B.: The convex hull of a random set of points. Biometrika 52, 331–343 (1965)

    Article  MathSciNet  Google Scholar 

  13. Glasauer, S.: Integralgeometrie konvexer Körper im sphärischen Raum. Ph.D. Thesis, University of Freiburg. http://www.hs-augsburg.de/~glasauer/publ/diss.pdf (1995). Accessed 25 Mar 2019

  14. Grünbaum, B.: Grassmann angles of convex polytopes. Acta Math. 121, 293–302 (1968)

    Article  MathSciNet  Google Scholar 

  15. Hörrmann, J., Hug, D., Reitzner, M., Thäle, C.: Poisson polyhedra in high dimensions. Adv. Math. 281, 1–39 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hug, D.: Random polytopes. In: Stochastic Geometry, Spatial Statistics and Random Fields. Asymptotic Methods. Selected papers based on the presentations at the summer academy on stochastic geometry, spatial statistics and random fields, Söllerhaus, September 13–26, 2009, pp. 205–238. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33305-7_7

    Google Scholar 

  17. Hug, D., Schneider, R.: Random conical tessellations. Discrete Comput. Geom. 56(2), 395–426 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kabluchko, Z., Temesvari, D., Thäle, C.: Expected intrinsic volumes and facet numbers of random beta-polytopes. Math. Nachr. 292, 79–105 (2019)

    Article  MathSciNet  Google Scholar 

  19. Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 3rd edn. (1983)

  20. Kallenberg, O.: Foundations of Modern Probability. Probability and Its Applications, 2nd edn. Springer, New York (2002)

    Book  Google Scholar 

  21. Majumdar, S.N., Comtet, A., Randon-Furling, J.: Random convex hulls and extreme value statistics. J. Stat. Phys. 138(6), 955–1009 (2010)

    Article  MathSciNet  Google Scholar 

  22. Miles, R.E.: Isotropic random simplices. Adv. Appl. Probab. 3, 353–382 (1971). https://doi.org/10.2307/1426176

    Article  MathSciNet  MATH  Google Scholar 

  23. Molchanov, I.: Theory of Random Sets. Probability and Its Applications. Springer, London (2005)

    Google Scholar 

  24. Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191(1), 178–208 (2005). https://doi.org/10.1016/j.aim.2004.03.006

    Article  MathSciNet  MATH  Google Scholar 

  25. Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 2, 75–84 (1963). https://doi.org/10.1007/BF00535300

    Article  MATH  Google Scholar 

  26. Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 138–147 (1964). https://doi.org/10.1007/BF00535973

    Article  MATH  Google Scholar 

  27. Resnick, S.: Extreme Values, Regular Variation, and Point Processes, Volume 4 of Applied Probability. Springer, New York (1987)

    Book  Google Scholar 

  28. Rogers, L.C.G.: The probability that two samples in the plane will have disjoint convex hulls. J. Appl. Probab. 15, 790–802 (1978). https://doi.org/10.2307/3213434

    Article  MathSciNet  MATH  Google Scholar 

  29. Schneider, R.: Recent results on random polytopes. Boll. Unione Mat. Ital. (9) 1(1), 17–39 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Schneider, R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. 41(3), 682–694 (2009)

    Article  MathSciNet  Google Scholar 

  31. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Volume 151 of Encyclopedia of Mathematics and Its Applications, expanded edition. Cambridge University Press, Cambridge (2014)

  32. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  33. Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994). https://doi.org/10.1002/mana.19941700117

    Article  MathSciNet  MATH  Google Scholar 

  34. Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diploma Thesis, University of Freiburg (1978)

Download references

Acknowledgements

We would like to that the referee, whose comments helped us to improved our text. The work of AM was supported by the return fellowship of the Alexander von Humboldt foundation. DT was supported by the Deutsche Forschungsgemeinschaft (DFG) via RTG 2131 High-Dimensional Phenomena in Probability—Fluctuations and Discontinuity. ZK and CT were supported by the DFG Scientific Network Cumulants, Concentration and Superconcentration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Marynych.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabluchko, Z., Marynych, A., Temesvari, D. et al. Cones generated by random points on half-spheres and convex hulls of Poisson point processes. Probab. Theory Relat. Fields 175, 1021–1061 (2019). https://doi.org/10.1007/s00440-019-00907-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00907-3

Keywords

Mathematics Subject Classification

Navigation