Skip to main content
Log in

Notes on random walks in the Cauchy domain of attraction

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

The goal of these notes is to fill some gaps in the literature about random walks in the Cauchy domain of attraction, which has often been left aside because of its additional technical difficulties. We prove here several results in that case: a Fuk–Nagaev inequality and a local version of it; a large deviation theorem; two types of local large deviation theorems. We also derive two important applications of these results: a sharp estimate of the tail of the first ladder epochs, and renewal theorems. Most of our techniques carry through to the case of random walks in the domain of attraction of an \(\alpha \)-stable law with \(\alpha \in (0,2)\), so we also present results in that case—some of them are improvement of the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, K.K., Athreya, K.B.: A note on conjugate \(\Pi \)-variation and a weak limit theorem for the number of renewals. Stat. Probab. Lett. 6, 151–154 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  3. Borovkov, A.A.: On the asymptotics of distributions of first-passage times. I. Math. Notes 75(1), 24–39 (2004)

    MathSciNet  Google Scholar 

  4. Borovkov, A.A.: On the asymptotics of distributions of first-passage times. II. Math. Notes 75(3), 322–330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Budd, T., Curien, N., Marzouk, C.: Infinite Random Planar Maps Related to Cauchy Processes. Journal de l’École polytechnique—Mathématiques, École polytechnique 5, 749–791 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caravenna, F., Doney, R.: Local Large Deviations and the Strong Renewal Theorem. Preprint arXiv:1612.07635v1

  7. Chover, J., Ney, P., Wainger, S.: Function of probability measures. J. Anal. Math. 26, 255–302 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cline, D.B.H., Hsing, T.: Large Deviation Probabilities for Sums of Random Variables with Heavy or Subexponential Tails. Texas A & M University, Technical Report (1994)

  9. Denisov, D., Dieker, A.B., Shneer, V.: Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36(5), 1946–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doney, R.A.: On the exact asymptotic behavior of the distribution of ladder epochs. Stoch. Proc. Appl. 12, 203–214 (1982)

    Article  MATH  Google Scholar 

  11. Doney, R.A.: On the asymptotic behaviour of first passage times for transient random walks. Probab. Theory Relat. Fields 18, 239–246 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doney, R.A.: One-sided local large deviations and renewal theorems in the case of infinite mean. Probab. Theory Relat. Fields 107, 451–465 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erickson, K.B.: Strong renewal theorems with infinite mean. Trans. Am. Math. Soc. 151, 263 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  15. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garsia, A., Lamperti, J.: A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37, 221–234 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gnedenko, B.V., Kolmogorov, A.N.: Limit Theorems for Sums of Independent Random Variables. Addison-Wesley, Cambridge (1954)

    MATH  Google Scholar 

  18. de Haan, L., Resnick, S.I.: Conjugate \(\Pi \)-variation and process inversion. Ann. Probab. 7, 1028–1035 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kortchemski, I., Richier, L.: Condensation in critical Cauchy Bienaimé–Galton–Watson trees. Preprint arXiv:1804.10183v2

  20. Nagaev, A.V.: Large deviations of sums of independent random variables. Ann Probab. 7(5), 745–789 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rogozin, B.A.: On the distribution of the first ladder moment and height and fluctuations of a random walk. Theory Probab. Appl. 16, 575–595 (1971)

    Article  MATH  Google Scholar 

  22. Stone, C.: On local and ratio limit theorems. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, Pt. 2, pp. 217–224 (1967)

  23. Vatutin, V.A., Wachtel, V.: Local probabilities for random walks conditioned to stay positive. Probab. Theory Relat. Fields 143, 177–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Veraverbeke, N.: Asymptotic behavior of Wiener–Hopf factors of a random walk. Stoch. Process. Appl. 5, 27–37 (1977)

    Article  MATH  Google Scholar 

  25. Wei, R.: On the long-range directed polymer model. J. Stat. Phys. 165(2), 320–350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Williamson, J.A.: Random Walks and Riesz kernels. Pac. J. Math. 25(2), 393 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zachary, S.: A note on Veraverbeke’s theorem. Queueing Syst. 46(1–2), 9–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zolotarev, V.M.: One-Dimensional Stable Distributions. American Mathematical Society, Providence (1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I am most grateful to Vitali Wachtel for his comments and his suggestions for the improvement of Theorem 3.2, and also to I. Kortchemski and L. Richier for attracting my attention to some subtleties of Theorem 3.4 (and to their article [19]). I thank the referees for their remarks and suggestions, in particular for pointing out references (and an elementary proof) for Theorem 3.7. I am grateful to Thomas Duquesne and Francesco Caravenna for the many discussions we had on this (and related) topic(s), and I also thank Cyril Marzouk for telling me about the reference [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Berger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, Q. Notes on random walks in the Cauchy domain of attraction. Probab. Theory Relat. Fields 175, 1–44 (2019). https://doi.org/10.1007/s00440-018-0887-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0887-0

Keywords

Mathematics Subject Classification

Navigation