Skip to main content
Log in

The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Leukocyte telomere length (LTL) is a heritable trait with two potential sources of heritability (h2): inherited variation in non-telomeric regions (e.g., SNPs that influence telomere maintenance) and variability in the lengths of telomeres in gametes that produce offspring zygotes (i.e., “direct” inheritance). Prior studies of LTL h2 have not attempted to disentangle these two sources. Here, we use a novel approach for detecting the direct inheritance of telomeres by studying the association between identity-by-descent (IBD) sharing at chromosome ends and phenotypic similarity in LTL. We measured genome-wide SNPs and LTL for a sample of 5069 Bangladeshi adults with substantial relatedness. For each of the 6318 relative pairs identified, we used SNPs near the telomeres to estimate the number of chromosome ends shared IBD, a proxy for the number of telomeres shared IBD (Tshared). We then estimated the association between Tshared and the squared pairwise difference in LTL ((ΔLTL)2) within various classes of relatives (siblings, avuncular, cousins, and distant), adjusting for overall genetic relatedness (ϕ). The association between Tshared and (ΔLTL)2 was inverse among all relative pair types. In a meta-analysis including all relative pairs (ϕ > 0.05), the association between Tshared and (ΔLTL)2 (P = 0.01) was stronger than the association between ϕ and (ΔLTL)2 (P = 0.43). Our results provide strong evidence that telomere length (TL) in parental germ cells impacts TL in offspring cells and contributes to LTL h2 despite telomere “reprogramming” during embryonic development. Applying our method to larger studies will enable robust estimation of LTL h2 attributable to direct transmission of telomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achi MV, Ravindranath N, Dym M (2000) Telomere length in male germ cells is inversely correlated with telomerase activity. Biol Reprod 63:591–598

    Article  CAS  Google Scholar 

  • Ahsan H, Chen Y, Parvez F, Argos M, Hussain AI, Momotaj H, Levy D, van Geen A, Howe G, Graziano J (2005) Health effects of arsenic longitudinal study (HEALS): description of a multidisciplinary epidemiologic investigation. J Expo Sci Environ Epidemiol 16:191–205

    Article  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Article  CAS  Google Scholar 

  • Argos M, Rahman M, Parvez F, Dignam J, Islam T, Quasem I, Hore SK, Haider AT, Hossain Z, Patwary TI et al (2013) Baseline comorbidities in a skin cancer prevention trial in Bangladesh. Eur J Clin Investig 43:579–588

    Article  CAS  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  CAS  Google Scholar 

  • Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM (2012) Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLOS Genet 8:e1002696

    Article  CAS  Google Scholar 

  • Bischoff C, Graakjaer J, Petersen HC, Jeune B, Bohr VA, Koelvraa S, Christensen K (2012) Telomere length among the elderly and oldest-old. Twin Res Hum Genet 8:425–432

    Article  Google Scholar 

  • Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198

    Article  CAS  Google Scholar 

  • Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, Albrecht E, Amin N, Beekman M, de Geus EJC et al (2013a) Meta-analysis of telomere length in 19[thinsp]713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet 21:1163–1168

    Article  CAS  Google Scholar 

  • Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, Albrecht E, Amin N, Beekman M, de Geus EJC et al (2013b) Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet 21:1163–1168

    Article  CAS  Google Scholar 

  • Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, Compton CC, DeLuca DS, Peter-Demchok J, Gelfand ET et al (2015) A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv Biobank 13:311–319

    Article  Google Scholar 

  • Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47–e47

    Article  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  CAS  Google Scholar 

  • Chiang YJ, Calado RT, Hathcock KS, Lansdorp PM, Young NS, Hodes RJ (2010) Telomere length is inherited with resetting of the telomere set-point. Proc Natl Acad Sci 107:10148–10153

    Article  CAS  Google Scholar 

  • Codd V, Mangino M, van der Harst P, Braund PS, Kaiser M, Beveridge AJ, Rafelt S, Moore J, Nelson C, Soranzo N et al (2010) Common variants near TERC are associated with mean telomere length. Nat Genet 42:197–199

    Article  CAS  Google Scholar 

  • Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I et al (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45:422–427

    Article  CAS  Google Scholar 

  • Collopy LC, Walne AJ, Cardoso S, de la Fuente J, Mohamed M, Toriello H, Tamary H, Ling AJYV, Lloyd T, Kassam R et al (2015) Triallelic and epigenetic-like inheritance in human disorders of telomerase. Blood 126:176

    Article  CAS  Google Scholar 

  • De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Van Criekinge W, De Backer GG, Gillebert TC, Van Oostveldt P, Bekaert S (2007) Paternal age at birth is an important determinant of offspring telomere length. Hum Mol Genet 16:3097–3102

    Article  Google Scholar 

  • De Meyer T, Vandepitte K, Denil S, De Buyzere ML, Rietzschel ER, Bekaert S (2014) A non-genetic, epigenetic-like mechanism of telomere length inheritance? Eur J Hum Genet 22:10–11

    Article  Google Scholar 

  • Delgado DA, Zhang C, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A et al (2017) Genome-wide association study of telomere length among South Asians identifies a second RTEL1 association signal. J Med Genet 55:64–71

    Article  Google Scholar 

  • Do SK, Yoo SS, Choi YY, Choi JE, Jeon H-S, Lee WK, Lee SY, Lee J, Cha SI, Kim CH et al (2015) Replication of the results of genome-wide and candidate gene association studies on telomere length in a Korean population. Korean J Intern Med 30:719–726

    Article  CAS  Google Scholar 

  • eGTEx Project (2017) Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet 49:1664

    Article  Google Scholar 

  • Ehrlenbach S, Willeit P, Kiechl S, Willeit J, Reindl M, Schanda K, Kronenberg F, Brandstätter A (2009) Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int J Epidemiol 38:1725–1734

    Article  Google Scholar 

  • Eisenberg DTA, Hayes MG, Kuzawa CW (2012) Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proc Natl Acad Sci 109:10251–10256

    Article  CAS  Google Scholar 

  • Faul JD, Mitchell CM, Smith JA, Zhao W (2016) Estimating telomere length heritability in an unrelated sample of adults: is heritability of telomere length modified by life course socioeconomic status? Biodemogr Soc Biol 62, 73–86

    Article  Google Scholar 

  • Hansen ME, Hunt SC, Stone RC, Horvath K, Herbig U, Ranciaro A, Hirbo J, Beggs W, Reiner AP, Wilson JG et al (2016) Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. Hum Mol Genet 25:2324–2330

    Article  CAS  Google Scholar 

  • Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. Br Med J 349:g4227

    Article  Google Scholar 

  • Hjelmborg JB, Dalgård C, Möller S, Steenstrup T, Kimura M, Christensen K, Kyvik KO, Aviv A (2015) The heritability of leucocyte telomere length dynamics. J Med Genet 52:297–302

    Article  CAS  Google Scholar 

  • Honig LS, Kang MS, Cheng R, Eckfeldt JH, Thyagarajan B, Leiendecker-Foster C, Province MA, Sanders JL, Perls T, Christensen K et al (2015) Heritability of telomere length in a study of long-lived families. Neurobiol Aging 36:2785–2790

    Article  CAS  Google Scholar 

  • Huang Y, Liang P, Liu D, Huang J, Songyang Z (2014) Telomere regulation in pluripotent stem cells. Protein Cell 5:194–202

    Article  CAS  Google Scholar 

  • Iles MM, Bishop DT, Taylor JC, Hayward NK, Brossard M, Cust AE, Dunning AM, Lee JE, Moses EK, Akslen LA et al (2014) The effect on melanoma risk of genes previously associated with telomere length. J Natl Cancer Inst 106:dju267

    Article  Google Scholar 

  • Kalmbach K, Robinson LG Jr, Wang F, Liu L, Keefe D (2014) Telomere length reprogramming in embryos and stem cells. Biomed Res Int 2014:925121

    Article  Google Scholar 

  • Kalmbach KH, Antunes DMF, Dracxler RC, Knier TW, Seth-Smith ML, Wang F, Liu L, Keefe DL (2013) Telomeres and human reproduction. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2012.1011.1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Kibriya MG, Jasmine F, Roy S, Ahsan H, Pierce B (2014) Measurement of telomere length: a new assay using QuantiGene chemistry on a Luminex platform. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cospons Am Soc Prev Oncol 23:2667–2672

    Article  CAS  Google Scholar 

  • Kibriya MG, Jasmine F, Roy S, Ahsan H, Pierce BL (2016) Novel luminex assay for telomere repeat mass does not show well position effects like qPCR. PloS One 11:e0155548

    Article  Google Scholar 

  • Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, Cupples A, Hunkin JL, Gardner JP, Lu X et al (2008) Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLOS Genet 4:e37

    Article  Google Scholar 

  • Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang S-J, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD et al (2010) Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA 107:9293–9298

    Article  CAS  Google Scholar 

  • Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40–46

    Article  CAS  Google Scholar 

  • Mangino M, Hwang S-J, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T et al (2012) Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet 21:5385–5394

    Article  CAS  Google Scholar 

  • Mangino M, Christiansen L, Stone R, Hunt SC, Horvath K, Eisenberg DTA, Kimura M, Petersen I, Kark JD, Herbig U et al (2015) DCAF4, a novel gene associated with leucocyte telomere length. J Med Genet 52:157–162

    Article  CAS  Google Scholar 

  • Ojha J, Codd V, Nelson CP, Samani NJ, Smirnov IV, Madsen NR, Hansen HM, de Smith AJ, Bracci PM, Wiencke JK et al (2016) Genetic variation associated with longer telomere length increases risk of chronic lymphocytic leukemia. Cancer Epidemiol Biomark Prev 25:1043–1049

    Article  CAS  Google Scholar 

  • Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S, Paul-Brutus R, Rahaman R, Rakibuz-Zaman M, Parvez F et al (2012) Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 8:e1002522

    Article  CAS  Google Scholar 

  • Pierce BL, Tong L, Argos M, Gao J, Jasmine F, Roy S, Paul-Brutus R, Rahaman R, Rakibuz-Zaman M, Parvez F et al (2013) Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene–environment interaction. Int J Epidemiol 42:1862–1872

    Article  Google Scholar 

  • Pierce BL, Jasmine F, Roy S, Zhang C, Aviv A, Hunt SC, Ahsan H, Kibriya MG (2016) Telomere length measurement by a novel Luminex-based assay: a blinded comparison to Southern blot. Int J Mol Epidemiol Genet 7:18–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, Amin Al Olama A, Michailidou K, Tyrer JP, Benlloch S, Brown J et al (2013) A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Hum Mol Genet 22:5056–5064

    Article  CAS  Google Scholar 

  • Prescott J, Kraft P, Chasman DI, Savage SA, Mirabello L, Berndt SI, Weissfeld JL, Han J, Hayes RB, Chanock SJ et al (2011) Genome-wide association study of relative telomere length. PloS One 6:e19635

    Article  CAS  Google Scholar 

  • Prescott J, Du M, Wong JY, Han J, De Vivo I (2012) Paternal age at birth is associated with offspring leukocyte telomere length in the nurses’ health study. Hum Reprod (Oxf Engl) 27:3622–3631

    Article  CAS  Google Scholar 

  • Shen Q, Zhang Z, Yu L, Cao L, Zhou D, Kan M, Li B, Zhang D, He L, Liu Y (2011) Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur J Hum Genet 19:721–723

    Article  CAS  Google Scholar 

  • Soerensen M, Thinggaard M, Nygaard M, Dato S, Tan Q, Hjelmborg J, Andersen-Ranberg K, Stevnsner T, Bohr VA, Kimura M et al (2012) Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross sectional and longitudinal analysis. Aging Cell 11:223–227

    Article  CAS  Google Scholar 

  • Stindl R (2016) The paradox of longer sperm telomeres in older men’s testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol Cytogenet 9:12

    Article  Google Scholar 

  • Unryn BM, Cook LS, Riabowol KT (2005) Paternal age is positively linked to telomere length of children. Aging Cell 4:97–101

    Article  CAS  Google Scholar 

  • Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG (2006) Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLOS Genet 2:e41

    Article  Google Scholar 

  • Walsh KM, Codd V, Rice T, Nelson CP, Smirnov IV, McCoy LS, Hansen HM, Elhauge E, Ojha J, Francis SS et al (2015) Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget 6:42468–42477

    Article  Google Scholar 

  • Walsh KM, Whitehead TP, de Smith AJ, Smirnov IV, Park M, Endicott AA, Francis SS, Codd V, Samani NJ, Metayer C et al (2016) Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis 37:576–582

    Article  CAS  Google Scholar 

  • Willeit P, Willeit J, Brandstätter A, Ehrlenbach S, Mayr A, Gasperi A, Weger S, Oberhollenzer F, Reindl M, Kronenberg F et al (2010a) Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 30:1649–1656

    Article  CAS  Google Scholar 

  • Willeit P, Willeit J, Mayr A et al (2010b) Telomere length and risk of incident cancer and cancer mortality. JAMA 304:69–75

    Article  CAS  Google Scholar 

  • Zhang C, Doherty JA, Burgess S, Hung RJ, Lindström S, Kraft P, Gong J, Amos CI, Sellers TA, Monteiro ANA et al (2015) Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Hum Mol Genet 24:5356–5366

    Article  CAS  Google Scholar 

  • Zhang C, Kibriya MG, Jasmine F, Roy S, Gao J, Sabarinathan M, Shinkle J, Delgado D, Ahmed A, Islam T et al (2018) A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. Environ Res 164:346–355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01 ES020506, U01 HG007601, P42 ES10349, R01 CA107431, R01 CA102484, P30 CA014599). The authors thank all the men and women who participated in HEALS and BEST and all research staff who contributed to data collection. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon L. Pierce.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, D.A., Zhang, C., Gleason, K. et al. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum Genet 138, 49–60 (2019). https://doi.org/10.1007/s00439-018-1964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-018-1964-2

Navigation