Skip to main content
Log in

FCGR3A and FCGR3B copy number variations are risk factors for sarcoidosis

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Sarcoidosis is a multisystem granulomatous disorder that causes significant morbidity. Genetic factors contribute to sarcoidosis risks. In this study, we investigated whether copy number variations (CNVs) of FCGR3A (coding for FcγRIIIA) and FCGR3B (coding for FcγRIIIB) genes are associated with sarcoidosis susceptibility and whether the expressions of FcγRIIIA on NK cells and FcγRIIIB on neutrophils are altered in sarcoidosis patients. TaqMan real-time PCR assays were used to analyze the CNV of FCGR3A and FCGR3B genes. FCGR3A and FCGR3B CNV genotypes were compared between 671 biopsy-proven sarcoidosis patients and the same number of healthy controls matched with age, sex, race, and geographic area from the ACCESS (A Case Control Etiologic Study of Sarcoidosis) cohort. Flow cytometry analyses were used to determine expressions of FcγRIIIA on NK cells and FcγRIIIB on neutrophils in phenotype analyses. We found that FCGR3A CNVs were significantly associated with sarcoidosis in females (CN = 1 vs. CN = 2 logistic regression adjusted for sex and race, OR 4.0156, SE = 2.2784, P = 0.0143; CN = 3 vs. CN = 2 logistic regression adjusted for sex and race, OR 2.8044, SE = 1.1065, P = 0.0090), suggesting that FCGR3A gene abnormality influences sarcoidosis development in a gender-specific manner. Furthermore, FcγRIIIA expressions were significantly decreased on NK cells from sarcoidosis patients compared to those from healthy controls (P = 0.0007). Additionally, low FCGR3B CN was associated with sarcoidosis (CN <2 vs. CN = 2 logistic regression adjusted for sex and race, OR 1.5025, SE = 0.2682, P = 0.0226), indicating that the functions of FCGR3B gene may also contribute to the pathogenesis of sarcoidosis. We conclude that FCGR3A CNVs are a major risk factor for female sarcoidosis and FCGR3B CNVs may also affect the development of sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C, Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR, Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855

    Article  CAS  PubMed  Google Scholar 

  • Baughman RP, Teirstein AS, Judson MA, Rossman MD, Yeager H Jr, Bresnitz EA, DePalo L, Hunninghake G, Iannuzzi MC, Johns CJ, McLennan G, Moller DR, Newman LS, Rabin DL, Rose C, Rybicki B, Weinberger SE, Terrin ML, Knatterud GL, Cherniak R (2001) Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 164:1885–1889

    Article  CAS  PubMed  Google Scholar 

  • Bell DY, Johnson SM, Piantadosi CA (1986) Elevated serum immunoglobulin G levels and bronchoalveolar lymphocytosis as predictors of clinical course in pulmonary sarcoidosis. Ann N Y Acad Sci 465:672–677

    Article  CAS  PubMed  Google Scholar 

  • Bouman A, Heineman MJ, Faas MM (2005) Sex hormones and the immune response in humans. Hum Reprod Update 11:411–423. doi:10.1093/humupd/dmi008

    Article  CAS  PubMed  Google Scholar 

  • Breunis WB, van Mirre E, Geissler J, Laddach N, Wolbink G, van der Schoot E, de Haas M, de Boer M, Roos D, Kuijpers TW (2009) Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum Mutat 30:E640–E650. doi:10.1002/humu.20997

    Article  PubMed  Google Scholar 

  • Chatham W (2010) Rheumatic manifestations of systemic disease: sarcoidosis. Curr Opin Rheumatol 22:85–90. doi:10.1097/BOR.0b013e328333ba74

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Wang CM, Chang SW, Cheng CH, Wu YJ, Lin JC, Yang B, Ho HH, Wu J (2014) Association of FCGR3A and FCGR3B copy number variations with systemic lupus erythematosus and rheumatoid arthritis in Taiwanese patients. Arthritis Rheumatol 66:3113–3121. doi:10.1002/art.38813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coxon A, Cullere X, Knight S, Sethi S, Wakelin MW, Stavrakis G, Luscinskas FW, Mayadas TN (2001) Fc gamma RIII mediates neutrophil recruitment to immune complexes. a mechanism for neutrophil accumulation in immune-mediated inflammation. Immunity 14:693–704

    Article  CAS  PubMed  Google Scholar 

  • Daniele RP, McMillan LJ, Dauber JH, Rossman MD (1978) Immune complexes in sarcoidosis: a correlation with activity and duration of disease. Chest 74:261–264

    Article  CAS  PubMed  Google Scholar 

  • Dubaniewicz A (2010) Mycobacterium tuberculosis heat shock proteins and autoimmunity in sarcoidosis. Autoimmun Rev 9:419–424. doi:10.1016/j.autrev.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  • Dubaniewicz A (2013) Microbial and human heat shock proteins as ‘danger signals’ in sarcoidosis. Hum Immunol 74:1550–1558. doi:10.1016/j.humimm.2013.08.275

    Article  CAS  PubMed  Google Scholar 

  • Dubaniewicz A, Typiak M, Wybieralska M, Szadurska M, Nowakowski S, Staniewicz-Panasik A, Rogoza K, Sternau A, Deeg P, Trzonkowski P (2012) Changed phagocytic activity and pattern of Fcgamma and complement receptors on blood monocytes in sarcoidosis. Hum Immunol 73:788–794. doi:10.1016/j.humimm.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  • Dubaniewicz A, Holownia A, Kalinowski L, Wybieralska M, Dobrucki IT, Singh M (2013) Is mycobacterial heat shock protein 16 kDa, a marker of the dormant stage of Mycobacterium tuberculosis, a sarcoid antigen? Hum Immunol 74:45–51. doi:10.1016/j.humimm.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  • Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SC, de Smith A, Blakemore AI, Froguel P, Owen CJ, Pearce SH, Teixeira L, Guillevin L, Graham DS, Pusey CD, Cook HT, Vyse TJ, Aitman TJ (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39:721–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerke AK (2014) Morbidity and mortality in sarcoidosis. Curr Opin Pulm Med 20:472–478. doi:10.1097/MCP.0000000000000080

    Article  PubMed  PubMed Central  Google Scholar 

  • Group (1999) Design of a case control etiologic study of sarcoidosis (ACCESS). ACCESS Research Group. J Clin Epidemiol 52:1173–1186. doi:10.1016/S0895-4356(99)00142-0

    Article  Google Scholar 

  • Grunewald J (2008) Genetics of sarcoidosis. Curr Opin Pulm Med 14:434–439. doi:10.1097/MCP.0b013e3283043de7

    Article  CAS  PubMed  Google Scholar 

  • Harrison D, Phillips JH, Lanier LL (1991) Involvement of a metalloprotease in spontaneous and phorbol ester-induced release of natural killer cell-associated Fc gamma RIII (CD16-II). J Immunol 147:3459–3465

    CAS  PubMed  Google Scholar 

  • Hedfors E, Norberg R (1974) Evidence for circulating immune complexes in sarcoidosis. Clin Exp Immunol 16:493–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heron M, Grutters JC, van Velzen-Blad H, Veltkamp M, Claessen AM, van den Bosch JM (2008) Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest 134:1001–1008. doi:10.1378/chest.08-0443

    Article  CAS  PubMed  Google Scholar 

  • Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI, Schurmann M, Muller-Quernheim J, Krawczak M, Rosenstiel P, Schreiber S (2008) Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 40:1103–1106. doi:10.1038/ng.198

    Article  CAS  PubMed  Google Scholar 

  • Hofmann S, Fischer A, Till A, Muller-Quernheim J, Hasler R, Franke A, Gade KI, Schaarschmidt H, Rosenstiel P, Nebel A, Schurmann M, Nothnagel M, Schreiber S (2011) A genome-wide association study reveals evidence of association with sarcoidosis at 6p12.1. Eur Respir J 38:1127–1135. doi:10.1183/09031936.00001711

    Article  CAS  PubMed  Google Scholar 

  • Hunninghake GW, Crystal RG (1981) Mechanisms of hypergammaglobulinemia in pulmonary sarcoidosis. Site of increased antibody production and role of T lymphocytes. J Clin Invest 67:86–92. doi:10.1172/JCI110036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannuzzi MC, Rybicki BA (2007) Genetics of sarcoidosis: candidate genes and genome scans. Proc Am Thorac Soc 4:108–116. doi:10.1513/pats.200607-141JG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannuzzi MC, Rybicki BA, Maliarik M, Popovich J Jr (1997) Finding disease genes. From cystic fibrosis to sarcoidosis. Thomas A. Neff Lecture. Chest 111:70S–73S

    Article  CAS  PubMed  Google Scholar 

  • Iannuzzi MC, Iyengar SK, Gray-McGuire C, Elston RC, Baughman RP, Donohue JF, Hirst K, Judson MA, Kavuru MS, Maliarik MJ, Moller DR, Newman LS, Rabin DL, Rose CS, Rossman MD, Teirstein AS, Rybicki BA (2005) Genome-wide search for sarcoidosis susceptibility genes in African Americans. Genes Immun 6:509–518. doi:10.1038/sj.gene.6364235

    Article  CAS  PubMed  Google Scholar 

  • Iannuzzi MC, Rybicki BA, Teirstein AS (2007) Sarcoidosis. N Engl J Med 357:2153–2165. doi:10.1056/NEJMra071714

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Ni Z, Wu J, Higgins L, Markowski TW, Kaufman DS, Walcheck B (2015) Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One 10:e0121788. doi:10.1371/journal.pone.0121788

    Article  PubMed  PubMed Central  Google Scholar 

  • Judson MA, Baughman RP, Teirstein AS, Terrin ML, Yeager H Jr (1999) Defining organ involvement in sarcoidosis: the ACCESS proposed instrument. ACCESS Research Group. A Case Control Etiologic Study of Sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 16:75–86

    CAS  PubMed  Google Scholar 

  • Krauss JC, PooH Xue W, Mayo-Bond L, Todd RF 3rd, Petty HR (1994) Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3. J Immunol 153:1769–1777

    CAS  PubMed  Google Scholar 

  • Lajoie L, Congy-Jolivet N, Bolzec A, Gouilleux-Gruart V, Sicard E, Sung HC, Peiretti F, Moreau T, Vie H, Clemenceau B, Thibault G (2014) ADAM17-mediated shedding of FcgammaRIIIA on human NK cells: identification of the cleavage site and relationship with activation. J Immunol 192:741–751. doi:10.4049/jimmunol.1301024

    Article  CAS  PubMed  Google Scholar 

  • Lazarus A (2009) Sarcoidosis: epidemiology, etiology, pathogenesis, and genetics. Dis Mon 55:649–660. doi:10.1016/j.disamonth.2009.04.008

    Article  PubMed  Google Scholar 

  • Lei B, DeLeo FR, Hoe NP, Graham MR, Mackie SM, Cole RL, Liu M, Hill HR, Low DE, Federle MJ, Scott JR, Musser JM (2001) Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat Med 7:1298–1305. doi:10.1038/nm1201-1298

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mair DC, Schuller RM, Li L, Wu J (2015) Genetic mechanism of human neutrophil antigen 2 deficiency and expression variations. PLoS Genet 11:e1005255. doi:10.1371/journal.pgen.1005255

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado LR, Hardwick RJ, Bowdrey J, Bogle H, Knowles TJ, Sironi M, Hollox EJ (2012) Evolutionary history of copy-number-variable locus for the low-affinity Fcgamma receptor: mutation rate, autoimmune disease, and the legacy of helminth infection. Am J Hum Genet 90:973–985. doi:10.1016/j.ajhg.2012.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClelland EE, Smith JM (2011) Gender specific differences in the immune response to infection. Arch Immunol Ther Exp (Warsz) 59:203–213. doi:10.1007/s00005-011-0124-3

    Article  Google Scholar 

  • McKinney C, Merriman TR (2012) Meta-analysis confirms a role for deletion in FCGR3B in autoimmune phenotypes. Hum Mol Genet. doi:10.1093/hmg/dds039

    PubMed  Google Scholar 

  • McKinney C, Broen JC, Vonk MC, Beretta L, Hesselstrand R, Hunzelmann N, Riemekasten G, Scorza R, Simeon CP, Fonollosa V, Carreira PE, Ortego-Centeno N, Gonzalez-Gay MA, Airo P, Coenen M, Martin J, Radstake TR, Merriman TR (2012) Evidence that deletion at FCGR3B is a risk factor for systemic sclerosis. Genes Immun 13:458–460. doi:10.1038/gene.2012.15

    Article  CAS  PubMed  Google Scholar 

  • Morgenthau AS, Iannuzzi MC (2011) Recent advances in sarcoidosis. Chest 139:174–182. doi:10.1378/chest.10-0188

    Article  PubMed  Google Scholar 

  • Mueller M, Barros P, Witherden AS, Roberts AL, Zhang Z, Schaschl H, Yu CY, Hurles ME, Schaffner C, Floto RA, Game L, Steinberg KM, Wilson RK, Graves TA, Eichler EE, Cook HT, Vyse TJ, Aitman TJ (2013) Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. Am J Hum Genet 92:28–40. doi:10.1016/j.ajhg.2012.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelkerke SQ, Tacke CE, Breunis WB, Geissler J, Sins JW, Appelhof B, van den Berg TK, de Boer M, Kuijpers TW (2015) Nonallelic homologous recombination of the FCGR2/3 locus results in copy number variation and novel chimeric FCGR2 genes with aberrant functional expression. Genes Immun 16:422–429. doi:10.1038/gene.2015.25

    Article  CAS  PubMed  Google Scholar 

  • Niederer HA, Willcocks LC, Rayner TF, Yang W, Lau YL, Williams TN, Scott JA, Urban BC, Peshu N, Dunstan SJ, Hien TT, Phu NH, Padyukov L, Gunnarsson I, Svenungsson E, Savage CO, Watts RA, Lyons PA, Clayton DG, Smith KG (2010) Copy number, linkage disequilibrium and disease association in the FCGR locus. Hum Mol Genet 19:3282–3294. doi:10.1093/hmg/ddq216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47. doi:10.1038/nri2206

    Article  CAS  PubMed  Google Scholar 

  • Nossent JC, Rischmueller M, Lester S (2012) Low copy number of the Fc-gamma receptor 3B gene FCGR3B is a risk factor for primary Sjogren’s syndrome. J Rheumatol 39:2142–2147. doi:10.3899/jrheum.120294

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Mizuno K, Horio T (2003) Circulating CD14+ CD16+ monocytes are expanded in sarcoidosis patients. J Dermatol 30:503–509. doi:10.1111/j.1346-8138.2003.tb00424.x

    Article  PubMed  Google Scholar 

  • Perussia B, Acuto O, Terhorst C, Faust J, Lazarus R, Fanning V, Trinchieri G (1983a) Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J Immunol 130:2142–2148

    CAS  PubMed  Google Scholar 

  • Perussia B, Starr S, Abraham S, Fanning V, Trinchieri G (1983b) Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol 130:2133–2141

    CAS  PubMed  Google Scholar 

  • Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV (1990) Organization of the human and mouse low-affinity Fc gamma R genes: duplication and recombination. Science 248:732–735

    Article  CAS  PubMed  Google Scholar 

  • Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    Article  CAS  PubMed  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  CAS  PubMed  Google Scholar 

  • Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Verneris M, Walcheck B, Miller J (2013) NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121:3599–3608. doi:10.1182/blood-2012-04-425397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossman MD, Kreider ME (2007) Lesson learned from ACCESS (a case controlled etiologic study of sarcoidosis). Proc Am Thorac Soc 4:453–456. doi:10.1513/pats.200607-138MS

    Article  PubMed  Google Scholar 

  • Rossman MD, Chien P, Cassizzi A, Elias JA, Schreiber AD (1986) Increased monocyte Fc(IgG) receptor expression in sarcoidosis. Ann N Y Acad Sci 465:260–267

    Article  CAS  PubMed  Google Scholar 

  • Rybicki BA, Major M, Popovich J Jr, Maliarik MJ, Iannuzzi MC (1997) Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 145:234–241

    Article  CAS  PubMed  Google Scholar 

  • Rybicki BA, Iannuzzi MC, Frederick MM, Thompson BW, Rossman MD, Bresnitz EA, Terrin ML, Moller DR, Barnard J, Baughman RP, DePalo L, Hunninghake G, Johns C, Judson MA, Knatterud GL, McLennan G, Newman LS, Rabin DL, Rose C, Teirstein AS, Weinberger SE, Yeager H, Cherniack R (2001a) Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med 164:2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Rybicki BA, Kirkey KL, Major M, Maliarik MJ, Popovich J Jr, Chase GA, Iannuzzi MC (2001b) Familial risk ratio of sarcoidosis in African-American sibs and parents. Am J Epidemiol 153:188–193

    Article  CAS  PubMed  Google Scholar 

  • Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC (2005) The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet 77:491–499. doi:10.1086/444435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith G, Brownell I, Sanchez M, Prystowsky S (2008) Advances in the genetics of sarcoidosis. Clin Genet 73:401–412. doi:10.1111/j.1399-0004.2008.00970.x

    Article  CAS  PubMed  Google Scholar 

  • Stockl J, Majdic O, Pickl WF, Rosenkranz A, Prager E, Gschwantler E, Knapp W (1995) Granulocyte activation via a binding site near the C-terminal region of complement receptor type 3 alpha-chain (CD11b) potentially involved in intramembrane complex formation with glycosylphosphatidylinositol-anchored Fc gamma RIIIB (CD16) molecules. J Immunol 154:5452–5463

    CAS  PubMed  Google Scholar 

  • Sverrild A, Backer V, Kyvik KO, Kaprio J, Milman N, Svendsen CB, Thomsen SF (2008) Heredity in sarcoidosis: a registry-based twin study. Thorax 63:894–896. doi:10.1136/thx.2007.094060

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi N, Asano K, Lauterbach M, Mayadas TN (2008) Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity 28:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Typiak MJ, Rebala K, Dudziak M, Dubaniewicz A (2014) Polymorphism of FCGR3A gene in sarcoidosis. Hum Immunol 75:283–288. doi:10.1016/j.humimm.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  • Typiak M, Rebala K, Dudziak M, Slominski JM, Dubaniewicz A (2016) Polymorphism of FCGR2A, FCGR2C, and FCGR3B genes in the pathogenesis of sarcoidosis. Adv Exp Med Biol. doi:10.1007/5584_2015_193

    PubMed  Google Scholar 

  • Weinberg I, Vasiliev L, Gotsman I (2000) Anti-dsDNA antibodies in sarcoidosis. Semin Arthritis Rheum 29:328–331. doi:10.1016/S0049-0172(00)80019-0

    Article  CAS  PubMed  Google Scholar 

  • Wiernik A, Foley B, Zhang B, Verneris MR, Warlick E, Gleason MK, Ross JA, Luo X, Weisdorf DJ, Walcheck B, Vallera DA, Miller JS (2013) Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res 19:3844–3855. doi:10.1158/1078-0432.CCR-13-0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA, Plagnol V, McGovern NN, Condliffe AM, Chilvers ER, Adu D, Jolly EC, Watts R, Lau YL, Morgan AW, Nash G, Smith KG (2008) Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med 205:1573–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Okabe H, Ochi Y, Hosoda T, Fujiyama Y, Hosoda S (1991) A case of sarcoidosis with increased CD3+ WT31− CD16+ lymphocytes. Rinsho Byori 39:675–677

    CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81:584–592. doi:10.1189/jlb.0806510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was prepared using ACCESS Research Materials obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center and does not necessarily reflect the opinions or views of the ACCESS or the NHLBI. We greatly appreciate Memorial Blood Center in Saint Paul for donor recruitment and sample collection. This study was partly supported by National Institute of Health grant HL117652 (Wu) and a grant from University of Minnesota Academic Health Center (Wu). The funders had no role in study design data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Wu.

Ethics declarations

Conflict of interest

The authors declare no any financial support or other benefits from commercial sources for the work reported on in the manuscript, or any other financial interests that any of the authors may have, which could create a potential conflict of interest with regard to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, Y., Guan, W. et al. FCGR3A and FCGR3B copy number variations are risk factors for sarcoidosis. Hum Genet 135, 715–725 (2016). https://doi.org/10.1007/s00439-016-1669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1669-3

Keywords

Navigation