Skip to main content
Log in

Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Trisomy 21 (Down syndrome, DS) is the most common human genetic anomaly associated with heart defects. Based on evolutionary conservation, DS-associated heart defects have been modeled in mice. By generating and analyzing mouse mutants carrying different genomic rearrangements in human chromosome 21 (Hsa21) syntenic regions, we found the triplication of the Tiam1Kcnj6 region on mouse chromosome 16 (Mmu16) resulted in DS-related cardiovascular abnormalities. In this study, we developed two tandem duplications spanning the Tiam1Kcnj6 genomic region on Mmu16 using recombinase-mediated genome engineering, Dp(16)3Yey and Dp(16)4Yey, spanning the 2.1 Mb Tiam1Il10rb and 3.7 Mb Ifnar1Kcnj6 regions, respectively. We found that Dp(16)4Yey/+, but not Dp(16)3Yey/+, led to heart defects, suggesting the triplication of the Ifnar1Kcnj6 region is sufficient to cause DS-associated heart defects. Our transcriptional analysis of Dp(16)4Yey/+ embryos showed that the Hsa21 gene orthologs located within the duplicated interval were expressed at the elevated levels, reflecting the consequences of the gene dosage alterations. Therefore, we have identified a 3.7 Mb genomic region, the smallest critical genomic region, for DS-associated heart defects, and our results should set the stage for the final step to establish the identities of the causal gene(s), whose elevated expression(s) directly underlie this major DS phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbag FI (2006) Congenital heart diseases and other major anomalies in patients with Down syndrome. Saudi Med J 27:219–222

    PubMed  Google Scholar 

  • Adams DJ, Biggs PJ, Cox T, Davies R, van der Weyden L, Jonkers J, Smith J, Plumb B, Taylor R, Nishijima I, Yu Y, Rogers J, Bradley A (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871

    Article  CAS  PubMed  Google Scholar 

  • Benn P, Borrell A, Cuckle H, Dugoff L, Gross S, Johnson JA, Maymon R, Odibo A, Schielen P, Spencer K, Wright D, Yaron Y (2012) Prenatal detection of Down Syndrome using massively parallel sequencing (MPS): a rapid response statement from a committee on behalf of the board of the international society for prenatal diagnosis, 24 October 2011. Prenat Diagn 32:1–2

    Article  PubMed  Google Scholar 

  • Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG (2007a) HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. FASEB J 21:2776–2786

    Article  CAS  PubMed  Google Scholar 

  • Birukova AA, Malyukova I, Mikaelyan A, Fu P, Birukov KG (2007b) Tiam1 and betaPIX mediate Rac-dependent endothelial barrier protective response to oxidized phospholipids. J Cell Physiol 211:608–617

    Article  CAS  PubMed  Google Scholar 

  • Bradley A (1987) Production and analysis of chimaeric mice. In: Robertson E (ed) Teratocarcinomas and embryonic stem cells: a practical approach. IRL Press, Oxford, pp 113–151

    Google Scholar 

  • Bradley A, Zheng B, Liu P (1998) Thirteen years of manipulating the mouse genome: a personal history. Int J Dev Biol 42:943–950

    CAS  PubMed  Google Scholar 

  • Brookes ME, Alberman E (1996) Early mortality and morbidity in children with Down’s syndrome diagnosed in two regional health authorities in 1989. J Med Screen 3:7–11

    CAS  PubMed  Google Scholar 

  • Chang LW, Chen PY, Kuo PL, Chang FM (2001) Prenatal diagnosis of a fetus with megacystis and monosomy 21. Prenat Diagn 21:512–513

    Article  CAS  PubMed  Google Scholar 

  • Donovan MJ, Hahn R, Tessarollo L, Hempstead BL (1996) Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat Genet 14:210–213

    Article  CAS  PubMed  Google Scholar 

  • Dunlevy L, Bennett M, Slender A, Lana-Elola E, Tybulewicz VL, Fisher EM, Mohun T (2010) Down syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse. Cardiovasc Res 88:287–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrich M, Deciu C, Zwiefelhofer T, Tynan JA, Cagasan L, Tim R, Lu V, McCullough R, McCarthy E, Nygren AO, Dean J, Tang L, Hutchison D, Lu T, Wang H, Angkachatchai V, Oeth P, Cantor CR, Bombard A, van den Boom D (2011) Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 204(205):e1–e11

    Google Scholar 

  • Epstein CJ (1986) The consequences of chromosome imbalance: principles, mechanism and models. Cambridge University Press, New York

    Book  Google Scholar 

  • Epstein CJ (1990) The consequences of chromosome imbalance. Am J Med Genet Suppl 7:31–37

    CAS  PubMed  Google Scholar 

  • Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C, Hobbs CA, Romitti PA, Royle MH, Torfs CP, Dooley KJ, Sherman SL (2008) Ethnicity, sex, and the incidence of congenital heart defects: a report from the National down syndrome project. Genet Med 10:173–180

    Article  PubMed  Google Scholar 

  • Goodship J, Cross I, LiLing J, Wren C (1998) A population study of chromosome 22q11 deletions in infancy. Arch Dis Child 79:348–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu H, Smith FC, Taffet SM, Delmar M (2003) High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 93:201–206

    Article  CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Zhu L, Hu L, Slesnick TC, Pautler RG, Justice MJ, Belmont JW (2013) Zic3 is required in the extra-cardiac perinodal region of the lateral plate mesoderm for left-right patterning and heart development. Hum Mol Genet 22:879–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joosten AM, De Vos S, Van Opstal D, Brandenburg H, Gaillard JL, Vermeij-Keers C (1997) Full monosomy 21, prenatally diagnosed by fluorescent in situ hybridization. Prenat Diagn 17:271–275

    Article  CAS  PubMed  Google Scholar 

  • Kava MP, Tullu MS, Muranjan MN, Girisha KM (2004) Down syndrome: clinical profile from India. Arch Med Res 35:31–35

    Article  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  Google Scholar 

  • Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, Grubert F, Erdman C, Gao MC, Lange K, Sobel EM, Barlow GM, Aylsworth AS, Carpenter NJ, Clark RD, Cohen MY, Doran E, Falik-Zaccai T, Lewin SO, Lott IT, McGillivray BC, Moeschler JB, Pettenati MJ, Pueschel SM, Rao KW, Shaffer LG, Shohat M, Van Riper AJ, Warburton D, Weissman S, Gerstein MB, Snyder M, Korenberg JR (2009) The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA 106:12031–12036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci USA 91:4997–5001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lana-Elola E, Watson-Scales SD, Fisher EM, Tybulewicz VL (2011) Down syndrome: searching for the genetic culprits. Dis Model Mech 4:586–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, Nowak N, Matsui S, Shiraishi I, Yu Y (2007) Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 16:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Lignon JM, Bichler Z, Hivert B, Gannier FE, Cosnay P, del Rio JA, Migliore-Samour D, Malecot CO (2008) Altered heart rate control in transgenic mice carrying the KCNJ6 gene of the human chromosome 21. Physiol Genomics 33:230–239

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zhang H, McLellan A, Vogel H, Bradley A (1998) Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 150:1155–1168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Belichenko PV, Zhang L, Fu D, Kleschevnikov AM, Baldini A, Antonarakis SE, Mobley WC, Yu YE (2011a) Mouse models for Down syndrome-associated developmental cognitive disabilities. Dev Neurosci 33:404–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Morishima M, Yu T, Matsui SI, Zhang L, Fu D, Pao A, Costa AC, Gardiner KJ, Cowell JK, Nowak NJ, Parmacek MS, Liang P, Baldini A, Yu YE (2011b) Genetic analysis of Down syndrome-associated heart defects in mice. Hum Genet 130:623–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyle R, Bena F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, Doco-Fenzy M, Cornillet-Lefebvre P, Pelet A, Lyonnet S, Toutain A, Colleaux L, Horst J, Kennerknecht I, Wakamatsu N, Descartes M, Franklin JC, Florentin-Arar L, Kitsiou S, Ait Yahya-Graison E, Costantine M, Sinet PM, Delabar JM, Antonarakis SE (2009) Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 17:454–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore CS (2006) Postnatal lethality and cardiac anomalies in the Ts65Dn Down syndrome mouse model. Mamm Genome 17:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, Chu GC, Sarkar M, Berul C, Smoot L, Robertson EJ, Schwartz R, Seidman JG, Seidman CE (2011) Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. Proc Natl Acad Sci USA 108:4006–4011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Natoli JL, Ackerman DL, McDermott S, Edwards JG (2012) Prenatal diagnosis of Down syndrome: a systematic review of termination rates (1995–2011). Prenat Diagn 32:142–153

    Article  PubMed  Google Scholar 

  • Norbury G, Norbury CJ (2008) Non-invasive prenatal diagnosis of single gene disorders: how close are we? Semin Fetal Neonatal Med 13:76–83

    Article  PubMed  Google Scholar 

  • O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci USA 94:14602–14607

    Article  PubMed Central  PubMed  Google Scholar 

  • Paladini D, Tartaglione A, Agangi A, Teodoro A, Forleo F, Borghese A, Martinelli P (2000) The association between congenital heart disease and Down syndrome in prenatal life. Ultrasound Obstet Gynecol 15:104–108

    Article  CAS  PubMed  Google Scholar 

  • Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, van den Boom D, Bombard AT, Deciu C, Grody WW, Nelson SF, Canick JA (2011) DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 13:913–920

    Article  CAS  PubMed  Google Scholar 

  • Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A (2010) Updated national birth prevalence estimates for selected birth defects in the US, 2004–2006. Birth Defects Res A Clin Mol Teratol 88:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Prescott K, Ivins S, Hubank M, Lindsay E, Baldini A, Scambler P (2005) Microarray analysis of the Df1 mouse model of the 22q11 deletion syndrome. Hum Genet 116:486–496

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Solis R, Davis AC, Bradley A (1993) Gene targeting in embryonic stem cells. Methods Enzymol 225:855–878

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378:720–724

    Article  CAS  PubMed  Google Scholar 

  • Rijnders RJ, Van Der Luijt RB, Peters ED, Goeree JK, Van Der Schoot CE, Ploos Van Amstel JK, Christiaens GC (2003) Earliest gestational age for fetal sexing in cell-free maternal plasma. Prenat Diagn 23:1042–1044

    Article  CAS  PubMed  Google Scholar 

  • Robertson E (1987) Embryo-derived stem cell lines. In: Robertson E (ed) Teratocarcinomas and embryonic stem cells: a practical approach. IRL Press, Oxford, pp 71–112

    Google Scholar 

  • Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361:1281–1289

    Article  PubMed  Google Scholar 

  • Roubertoux PL, Carlier M (2010) Mouse models of cognitive disabilities in trisomy 21 (Down syndrome). Am J Med Genet C Semin Med Genet 154C:400–416

    Article  PubMed  Google Scholar 

  • Rowe RD, Uchida IA (1961) Cardiac malformation in mongolism: a prospective study of 184 mongoloid children. Am J Med 31:726–735

    Article  CAS  PubMed  Google Scholar 

  • Scheffer PG, van der Schoot CE, Page-Christiaens GC, Bossers B, van Erp F, de Haas M (2010) Reliability of fetal sex determination using maternal plasma. Obstet Gynecol 115:117–126

    Article  CAS  PubMed  Google Scholar 

  • Sikora A, Zimmermann BG, Rusterholz C, Birri D, Kolla V, Lapaire O, Hoesli I, Kiefer V, Jackson L, Hahn S (2010) Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem 56:136–138

    Article  CAS  PubMed  Google Scholar 

  • Sinet PM, Theophile D, Rahmani Z, Chettouh Z, Blouin JL, Prieur M, Noel B, Delabar JM (1994) Mapping of the Down syndrome phenotype on chromosome 21 at the molecular level. Biomed Pharmacother 48:247–252

    Article  CAS  PubMed  Google Scholar 

  • Singleton PA, Dudek SM, Chiang ET, Garcia JG (2005) Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 19:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Terada R, Warren S, Lu JT, Chien KR, Wessels A, Kasahara H (2011) Ablation of Nk2–5 at mid-embryonic stage results in premature lethality and cardiac malformation. Cardiovasc Res 91:289–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torfs CP, Christianson RE (1998) Anomalies in Down syndrome individuals in a large population-based registry. Am J Med Genet 77:431–438

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  CAS  PubMed  Google Scholar 

  • Vis JC, Duffels MG, Winter MM, Weijerman ME, Cobben JM, Huisman SA, Mulder BJ (2009) Down syndrome: a cardiovascular perspective. J Intellect Disabil Res 53:419–425

    Article  CAS  PubMed  Google Scholar 

  • Williams AD, Mjaatvedt CH, Moore CS (2008) Characterization of the cardiac phenotype in neonatal Ts65Dn mice. Dev Dyn 237:426–435

    Article  PubMed  Google Scholar 

  • Yin Z, Haynie J, Yang X, Han B, Kiatchoosakun S, Restivo J, Yuan S, Prabhakar NR, Herrup K, Conlon RA, Hoit BD, Watanabe M, Yang YC (2002) The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci USA 99:10488–10493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790

    Article  CAS  PubMed  Google Scholar 

  • Yu YE, Morishima M, Pao A, Wang DY, Wen XY, Baldini A, Bradley A (2006) A deficiency in the region homologous to human 17q21.33–q23.2 causes heart defects in mice. Genetics 173:297–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui S, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19:2780–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133:3587–3595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Fu D, Belichenko PV, Liu C, Kleschevnikov AM, Pao A, Liang P, Clapcote SJ, Mobley WC, Yu YE (2012) Genetic analysis of Down syndrome facilitated by mouse chromosome engineering. Bioeng Bugs 3:8–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Meng K, Jiang X, Liu C, Pao A, Belichenko PV, Kleschevnikov A, Josselyn S, Liang P, Ye P, Mobley WC, Yu YE (2013) Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant for Down syndrome-related developmental cognitive deficits. Hum Mol Genet (Epub ahead of print) http://hmg.oxfordjournals.org/content/early/2013/09/24/hmg.ddt446.long

Download references

Acknowledgments

The authors would like to thank Dawei Fu and Hiromi Kasahara-Sagawa for their technical assistance. This study is supported in part by grants from the Children’s Guild Foundation and the NIH (R01HL91519, R01NS66072 and P30CA16056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Eugene Yu.

Additional information

C. Liu, M. Morishima and X. Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Morishima, M., Jiang, X. et al. Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum Genet 133, 743–753 (2014). https://doi.org/10.1007/s00439-013-1407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1407-z

Keywords

Navigation