Skip to main content
Log in

Identification of BACH2 as a susceptibility gene for Graves’ disease in the Chinese Han population based on a three-stage genome-wide association study

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The BACH2 gene regulates B cell differentiation and function and has been reported to be a shared susceptibility gene for several autoimmune diseases. Our previous genome-wide association study (GWAS) indicated that several single nucleotide polymorphisms (SNPs) in the BACH2 gene are associated with Graves’ disease (GD) in the Chinese Han population; however, the association did not achieve genome-wide significance levels. Recently, this association of BACH2 with GD was confirmed in Caucasians in the UK population, but fine mapping in this region has not yet been reported. Here, we provide a refined analysis of a 331-kb region in the BACH2 gene, which harbors 359 SNPs, using GWAS data from 1,442 GD patients and 1,468 controls. The SNPs rs2474619 and rs9344996 were implied as the independent variants associated with GD by forward and two-locus logistic regression analysis. We genotyped eight out of 10 tagSNPs with P < 1 × 10−3 in 3,508 GD patients and 3,209 controls, the results also showed that rs2474619 was independently associated with GD in the combined population from GWAS and the second stage (P = 1.81 × 10−5). The rs2474619 and rs9344996 were further genotyped in the third stage cohorts, and rs2474619 showed evidence of association with GD at genome-wide significance levels in the combined population (P = 3.28 × 10−8, odds ratio = 1.13). The association of rs9344996 with GD can be explained by its linkage to rs2474619 in the combined population. Our study clearly demonstrated that BACH2 is a susceptibility gene for GD in the Chinese Han population and further supported rs2474619, in intron 2 of BACH2, is the best association signal with GD. However, the mechanism by which BACH2 confers increased risk of GD requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707. doi:10.1038/ng.381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE, Mentch FD, Qiu H, Glessner JT, Thomas KA, Frackelton EC, Chiavacci RM, Imielinski M, Monos DS, Pandey R, Bakay M, Grant SF, Polychronakos C, Hakonarson H (2011) A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7:e1002293. doi:10.1371/journal.pgen.1002293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brent GA (2010) Environmental exposures and autoimmune thyroid disease. Thyroid 20:755–761. doi:10.1089/thy.2010.1636

    Article  PubMed Central  PubMed  Google Scholar 

  • Brix TH, Kyvik KO, Christensen K, Hegedus L (2001) Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 86:930–934

    CAS  PubMed  Google Scholar 

  • Carella C, Mazziotti G, Sorvillo F, Piscopo M, Cioffi M, Pilla P, Nersita R, Iorio S, Amato G, Braverman LE, Roti E (2006) Serum thyrotropin receptor antibodies concentrations in patients with Graves’ disease before, at the end of methimazole treatment, and after drug withdrawal: evidence that the activity of thyrotropin receptor antibody and/or thyroid response modify during the observation period. Thyroid 16:295–302. doi:10.1089/thy.2006.16.295

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Xue LQ, Shen M, Liu W, Xie F, Yang SY, Wang HF, Shi JY, Sun WW, Du WH, Zuo CL, Shi JX, Liu BL, Guo CC, Zhan M, Gu ZH, Zhang XN, Sun F, Wang ZQ, Song ZY, Zou CY, Sun WH, Guo T, Cao HM, Ma JH, Han B, Li P, Jiang H, Huang QH, Liang L, Liu LB, Chen G, Su Q, Peng YD, Zhao JJ, Ning G, Chen Z, Chen JL, Chen SJ, Huang W, Song HD (2011) A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet 43:897–901. doi:10.1038/ng.898

    Article  CAS  PubMed  Google Scholar 

  • Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, Downes K, Barrett JC, Healy BC, Mychaleckyj JC, Warram JH, Todd JA (2008) Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 40:1399–1401. doi:10.1038/ng.249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper JD, Simmonds MJ, Walker NM, Burren O, Brand OJ, Guo H, Wallace C, Stevens H, Coleman G, Franklyn JA, Todd JA, Gough SC (2012) Seven newly identified loci for autoimmune thyroid disease. Hum Mol Genet 21:5202–5208. doi:10.1093/hmg/dds357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, Zhernakova A, Heap GA, Adany R, Aromaa A, Bardella MT, van den Berg LH, Bockett NA, de la Concha EG, Dema B, Fehrmann RS, Fernandez-Arquero M, Fiatal S, Grandone E, Green PM, Groen HJ, Gwilliam R, Houwen RH, Hunt SE, Kaukinen K, Kelleher D, Korponay-Szabo I, Kurppa K, MacMathuna P, Maki M, Mazzilli MC, McCann OT, Mearin ML, Mein CA, Mirza MM, Mistry V, Mora B, Morley KI, Mulder CJ, Murray JA, Nunez C, Oosterom E, Ophoff RA, Polanco I, Peltonen L, Platteel M, Rybak A, Salomaa V, Schweizer JJ, Sperandeo MP, Tack GJ, Turner G, Veldink JH, Verbeek WH, Weersma RK, Wolters VM, Urcelay E, Cukrowska B, Greco L, Neuhausen SL, McManus R, Barisani D, Deloukas P, Barrett JC, Saavalainen P, Wijmenga C, van Heel DA (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42:295–302. doi:10.1038/ng.543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Cohen A, Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panes J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma RK, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125. doi:10.1038/ng.717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant SF, Qu HQ, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Taback SP, Frackelton EC, Eckert AW, Annaiah K, Lawson ML, Otieno FG, Santa E, Shaner JL, Smith RM, Skraban R, Imielinski M, Chiavacci RM, Grundmeier RW, Stanley CA, Kirsch SE, Waggott D, Paterson AD, Monos DS, Polychronakos C, Hakonarson H (2009) Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 58:290–295. doi:10.2337/db08-1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heward JM, Brand OJ, Barrett JC, Carr-Smith JD, Franklyn JA, Gough SC (2007) Association of PTPN22 haplotypes with Graves’ disease. J Clin Endocrinol Metab 92:685–690. doi:10.1210/jc.2006-2064

    Article  CAS  PubMed  Google Scholar 

  • Hong SW, Kim S, Lee DK (2008) The role of Bach2 in nucleic acid-triggered antiviral innate immune responses. Biochem Biophys Res Commun 365:426–432. doi:10.1016/j.bbrc.2007.10.183

    Article  CAS  PubMed  Google Scholar 

  • Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529. doi:10.1371/journal.pgen.1000529

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, Cole JB, Gowan K, Holland PJ, Bennett DC, Luiten RM, Wolkerstorfer A, van der Veen JP, Hartmann A, Eichner S, Schuler G, van Geel N, Lambert J, Kemp EH, Gawkrodger DJ, Weetman AP, Taieb A, Jouary T, Ezzedine K, Wallace MR, McCormack WT, Picardo M, Leone G, Overbeck A, Silverberg NB, Spritz RA (2012) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 44:676–680. doi:10.1038/ng.2272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TY, Park YJ, Hwang JK, Song JY, Park KS, Cho BY, Park DJ (2003) A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves’ disease in Koreans. Thyroid 13:919–925. doi:10.1089/105072503322511319

    Article  PubMed  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913. doi:10.1038/ng2088

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Tashiro S, Nakajima O, Hoshino H, Takahashi S, Sakoda E, Ikebe D, Yamamoto M, Igarashi K (2004) The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429:566–571. doi:10.1038/nature02596

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Ochiai K, Kimura Y, Itoh-Nakadai A, Calame KL, Ikebe D, Tashiro S, Igarashi K (2010) Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. EMBO J 29:4048–4061. doi:10.1038/emboj.2010.257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16:6083–6095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patsopoulos NA, Esposito F, Reischl J, Lehr S, Bauer D, Heubach J, Sandbrink R, Pohl C, Edan G, Kappos L, Miller D, Montalban J, Polman CH, Freedman MS, Hartung HP, Arnason BG, Comi G, Cook S, Filippi M, Goodin DS, Jeffery D, O’Connor P, Ebers GC, Langdon D, Reder AT, Traboulsee A, Zipp F, Schimrigk S, Hillert J, Bahlo M, Booth DR, Broadley S, Brown MA, Browning BL, Browning SR, Butzkueven H, Carroll WM, Chapman C, Foote SJ, Griffiths L, Kermode AG, Kilpatrick TJ, Lechner-Scott J, Marriott M, Mason D, Moscato P, Heard RN, Pender MP, Perreau VM, Perera D, Rubio JP, Scott RJ, Slee M, Stankovich J, Stewart GJ, Taylor BV, Tubridy N, Willoughby E, Wiley J, Matthews P, Boneschi FM, Compston A, Haines J, Hauser SL, McCauley J, Ivinson A, Oksenberg JR, Pericak-Vance M, Sawcer SJ, De Jager PL, Hafler DA, de Bakker PI (2011) Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 70:897–912. doi:10.1002/ana.22609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plagnol V, Howson JM, Smyth DJ, Walker N, Hafler JP, Wallace C, Stevens H, Jackson L, Simmonds MJ, Bingley PJ, Gough SC, Todd JA (2011) Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet 7:e1002216. doi:10.1371/journal.pgen.1002216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’Alfonso S, Blackburn H, Martinelli Boneschi F, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, D’Hooghe MB, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219. doi:10.1038/nature10251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxall H, Carr-Smith J, Gibson SM, Walker N, Tomer Y, Franklyn JA, Todd JA, Gough SC (2005) Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet 76:157–163. doi:10.1086/426947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmonds MJ, Howson JM, Heward JM, Carr-Smith J, Franklyn JA, Todd JA, Gough SC (2007) A novel and major association of HLA-C in Graves’ disease that eclipses the classical HLA-DRB1 effect. Hum Mol Genet 16:2149–2153. doi:10.1093/hmg/ddm165

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MJ, Yesmin K, Newby PR, Brand OJ, Franklyn JA, Gough SC (2010) Confirmation of association of chromosome 5q31-33 with United Kingdom Caucasian Graves’ disease. Thyroid 20:413–417. doi:10.1089/thy.2009.0375

    Article  CAS  PubMed  Google Scholar 

  • Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R (2005) Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol (Oxf) 62:679–682. doi:10.1111/j.1365-2265.2005.02279.x

    Article  CAS  Google Scholar 

  • Smith BR, Bolton J, Young S, Collyer A, Weeden A, Bradbury J, Weightman D, Perros P, Sanders J, Furmaniak J (2004) A new assay for thyrotropin receptor autoantibodies. Thyroid 14:830–835. doi:10.1089/thy.2004.14.830

    Article  CAS  PubMed  Google Scholar 

  • Song HD, Liang J, Shi JY, Zhao SX, Liu Z, Zhao JJ, Peng YD, Gao GQ, Tao J, Pan CM, Shao L, Cheng F, Wang Y, Yuan GY, Xu C, Han B, Huang W, Chu X, Chen Y, Sheng Y, Li RY, Su Q, Gao L, Jia WP, Jin L, Chen MD, Chen SJ, Chen Z, Chen JL (2009) Functional SNPs in the SCGB3A2 promoter are associated with susceptibility to Graves’ disease. Hum Mol Genet 18:1156–1170. doi:10.1093/hmg/ddn442

    Article  CAS  PubMed  Google Scholar 

  • Szymanski K, Bednarczuk T, Krajewski P, Ploski R (2012) The replication of the association of the rs6832151 within chromosomal band 4p14 with Graves’ disease in a Polish Caucasian population. Tissue Antigens 79:380–383. doi:10.1111/j.1399-0039.2012.01854.x

    Article  CAS  PubMed  Google Scholar 

  • Tomer Y, Concepcion E, Greenberg DA (2002) A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 12:1129–1135. doi:10.1089/105072502321085234

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511. doi:10.1038/nature01621

    Article  CAS  PubMed  Google Scholar 

  • Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  • Zhao SX, Pan CM, Cao HM, Han B, Shi JY, Liang J, Gao GQ, Peng YD, Su Q, Chen JL, Zhao JJ, Song HD (2010) Association of the CTLA4 gene with Graves’ disease in the Chinese Han population. PLoS One 5:e9821. doi:10.1371/journal.pone.0009821

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao SX, Xue LQ, Liu W, Gu ZH, Pan CM, Yang SY, Zhan M, Wang HN, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Du WH, Liu BL, Liu LB, Chen G, Su Q, Peng YD, Zhao JJ, Ning G, Huang W, Liang L, Qi L, Chen SJ, Chen Z, Chen JL, Song HD (2013) Robust evidence for five new Graves’ disease risk loci from a staged genome-wide association analysis. Hum Mol Genet 22:3347–3362. doi:10.1093/hmg/ddt183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (grant numbers 81100553, 81200568, 81270863, 81370888, 81000321, 81101444 and 31171127), the National Basic Research Program of China (973) (grant numbers 2010CB529204 and 2012CB517604), the Shanghai Jiaotong University (SJTU) School of Medicine (grant number BXJ201208), the Program for Graves’ Disease, the Innovative Research Team of the Shanghai Municipal Education Commission and the Natural Science Foundation of Jiangsu Province, China (grant numbers BK2009208 and SBK201221245). The funders had no role in the study design, collection and analysis of the data, decision to publish or the preparation of the manuscript. Membership of the China Consortium for the Genetics of Autoimmune Thyroid Disease: Huai-Dong Song: State Key Laboratory of Medical Genomics, Molecular Medicine Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China; Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai, China. Shuang-Xia Zhao: State Key Laboratory of Medical Genomics, Molecular Medicine Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China; Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai, China. Chun-Ming Pan: State Key Laboratory of Medical Genomics, Molecular Medicine Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China. Jun Liang: Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China. Xiao-Mei Zhang: Department of Endocrinology, The First Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui Province, China. Guo-Yue Yuan: Department of Endocrinology, The Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China. Chang-Gui Li: Department of Endocrinology and Gout Laboratory, Medical School Hospital of Qingdao University, Qingdao, Shandong Province, China. Jia-Lun Chen: Shanghai Institute of Endocrinology and Metabolism, Department of Endocrinology, Ruijin Hospital Affiliated to SJTU School of Medicine, Shanghai, China. Guan-Qi Gao: Department of Endocrinology, Linyi People’s Hospital, Linyi, Shandong Province, China. Li-Bin Liu: Department of Endocrinology, Xiehe Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian Province, China. Gang Chen: Department of Endocrinology, Fujian Province Hospital, Fuzhou, Fujian Province, China. Qing Su: Department of Endocrinology, Xin-Hua Hospital Affiliated to SJTU School of Medicine, Shanghai 200092, China. Yong-De Peng: Department of Endocrinology, The First People’s Hospital Affiliated to SJTU School of Medicine, Shanghai, China. Jia-Jun Zhao: Department of Endocrinology, Shandong Province Hospital, Shandong University, Jinan, China. We thank all patients and normal individuals for participating in this study.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Huai-Dong Song.

Additional information

W. Liu, H.-N. Wang, Z.-H. Gu and S.-Y. Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 198 kb)

Supplementary Table 1. Association results for the imputed and typed SNPs in the ~331-kb region at 6q15 with GD in the genome-wide association.

Supplementary Table 2. The r 2 between 10 tagSNPs and these captured SNPs.

Supplementary Table 3. Two-locus logistic regression analysis results of 10 tagSNPs in GWAS stage.

Supplementary Table 4. Two-locus logistic regression analysis results of 8 tagSNPs in combined GWAS and second replication stage data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, HN., Gu, ZH. et al. Identification of BACH2 as a susceptibility gene for Graves’ disease in the Chinese Han population based on a three-stage genome-wide association study. Hum Genet 133, 661–671 (2014). https://doi.org/10.1007/s00439-013-1404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1404-2

Keywords

Navigation