Skip to main content
Log in

Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Two syndromic cognitive impairment disorders have very similar craniofacial dysmorphisms. One is caused by mutations of SATB2, a transcription regulator and the other by heterozygous mutations leading to premature stop codons in UPF3B, encoding a member of the nonsense-mediated mRNA decay complex. Here we demonstrate that the products of these two causative genes function in the same pathway. We show that the SATB2 nonsense mutation in our patient leads to a truncated protein that localizes to the nucleus, forms a dimer with wild-type SATB2 and interferes with its normal activity. This suggests that the SATB2 nonsense mutation has a dominant negative effect. The patient’s leukocytes had significantly decreased UPF3B mRNA compared to controls. This effect was replicated both in vitro, where siRNA knockdown of SATB2 in HEK293 cells resulted in decreased UPF3B expression, and in vivo, where embryonic tissue of Satb2 knockout mice showed significantly decreased Upf3b expression. Furthermore, chromatin immunoprecipitation demonstrates that SATB2 binds to the UPF3B promoter, and a luciferase reporter assay confirmed that SATB2 expression significantly activates gene transcription using the UPF3B promoter. These findings indicate that SATB2 activates UPF3B expression through binding to its promoter. This study emphasizes the value of recognizing disorders with similar clinical phenotypes to explore underlying mechanisms of genetic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

ChIP:

Chromatin immunoprecipitation

DMEM:

Dulbecco’s modified Eagle medium

E:

Embryonic day

HEK:

Human embryonic kidney

h:

Hours

HRP:

Horseradish peroxidase

MAR:

Matrix attachment regions

min:

Minutes

Mt:

Mutant/truncated

NLS:

Nuclear localization signal

NMD:

Nonsense-mediated mRNA decay

PBS:

Phosphate buffered saline

PSG:

Penicillin-streptomycin-glutamine

SATB2:

Special AT-rich Sequence Binding 2

SDS:

Sodium dodecyl sulfate

siRNA:

Small interfering RNA

UPF3B :

UPF3 regulator of nonsense transcripts homolog B

Wt:

Wild type

References

  • Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay N, Miller R, Tossell J, Bakalar J, Germain G, Gochman P, Long R, Rapoport JL, Rouleau GA (2011) A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol Psychiatry 16:238–239

    Article  PubMed  CAS  Google Scholar 

  • Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y (2008) The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 29:992–1006

    Article  PubMed  CAS  Google Scholar 

  • Apostolova G, Loy B, Dorn R, Dechant G (2010) The sympathetic neurotransmitter switch depends on the nuclear matrix protein Satb2. J Neurosci 30:16356–16364

    Article  PubMed  CAS  Google Scholar 

  • Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, Thomas NS, Jacobs PA, Crolla JA (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82:927–936

    Article  PubMed  CAS  Google Scholar 

  • Brewer CM, Leek JP, Green AJ, Holloway S, Bonthron DT, Markham AF, FitzPatrick DR (1999) A locus for isolated cleft palate, located on human chromosome 2q32. Am J Hum Genet 65:387–396

    Article  PubMed  CAS  Google Scholar 

  • Buchwald G, Ebert J, Basquin C, Sauliere J, Jayachandran U, Bono F, Le Hir H, Conti E (2010) Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex. Proc Natl Acad Sci USA 107:10050–10055

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Lau J, Cheng LS, Grant RI, Robinson F, Ketela T, Reis PP, Roche O, Kamel-Reid S, Moffat J, Ohh M, Perez-Ordonez B, Kaplan DR, Irwin MS (2010) SATB2 augments DeltaNp63alpha in head and neck squamous cell carcinoma. EMBO Rep 11:777–783

    Article  PubMed  CAS  Google Scholar 

  • Dobreva G, Dambacher J, Grosschedl R (2003) SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 17:3048–3061

    Article  PubMed  CAS  Google Scholar 

  • Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986

    Article  PubMed  CAS  Google Scholar 

  • Eberhard J, Gaber A, Wangefjord S et al (2012) A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br J Cancer 106:931–938

    Article  PubMed  CAS  Google Scholar 

  • Ellies DL, Krumlauf R (2006) Bone formation: the nuclear matrix reloaded. Cell 125:840–842

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Williamson K, Gautier P, McGill N, Hayward C, Firth H, Markham AF, Fantes JA, Bonthron DT (2003) Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet 12:2491–2501

    Article  PubMed  CAS  Google Scholar 

  • Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE (2003) Y14 and hUpf3b form an NMD-activating complex. Mol Cell 1:939–949

    Article  Google Scholar 

  • Grandis M, Vigo T, Passalacqua M, Jain M, Scazzola S, La Padula V, Brucal M, Benvenuto F, Nobbio L, Cadoni A, Mancardi GL, Kamholz J, Shy ME, Schenone A (2008) Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations. Hum Mol Genet 17:1877–1889

    Article  PubMed  CAS  Google Scholar 

  • Kadlec J, Izaurralde E, Cusack S (2004) The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat Struct Mol Biol 11:330–337

    Article  PubMed  CAS  Google Scholar 

  • Lebrun AH, Moll-Khosrawi P, Pohl S, Makrypidi G, Storch S, Kilian D, Streichert T, Otto B, Mole SE, Ullrich K, Cotman S, Kohlschutter A, Braulke T, Schulz A (2011) Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol Med 17:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Chaowanapanja P, Gahl WA, Shotelersuk V (2007) Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum Mutat 28:732–738

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594

    Article  PubMed  CAS  Google Scholar 

  • Magnusson K, de Wit M, Brennan DJ et al (2011) Satb2 in combination with cytokeratin 20 identifies over 95 % of all colorectal carcinomas. Am J Surg Pathol 35:937–948

    Article  PubMed  Google Scholar 

  • Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RC, Gillessen-Kaesbach G, Wieczorek D, Kavamura MI, Kurosawa K, Ohashi H, Wilson L, Heron D, Bonneau D, Corona G, Kaname T, Naritomi K, Baumann C, Matsumoto N, Kato K, Kure S, Matsubara Y (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38:294–296

    Article  PubMed  CAS  Google Scholar 

  • Rauch A, Wieczorek D, Graf E et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682

    Article  PubMed  CAS  Google Scholar 

  • Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6:46–57

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS, Torchia BA, Shaffer LG (2009) Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS ONE 4:e6568

    Article  PubMed  Google Scholar 

  • Savarese F, Davila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, Engelke R, Takahashi K, Jenuwein T, Kohwi-Shigematsu T, Fisher AG, Grosschedl R (2009) Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev 23:2625–2638

    Article  PubMed  CAS  Google Scholar 

  • Schlenstedt G (1996) Protein import into the nucleus. FEBS Lett 389:75–79

    Article  PubMed  CAS  Google Scholar 

  • Serin G, Gersappe A, Black JD, Aronoff R, Maquat LE (2001) Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol Cell Biol 21:209–223

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan K, Leone DP, Bateson RK, Dobreva G, Kohwi Y, Kohwi-Shigematsu T, Grosschedl R, McConnell SK (2012) A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc Natl Acad Sci USA 109:19071–19078

    Article  PubMed  CAS  Google Scholar 

  • Steidl S, Tuncher A, Goda H, Guder C, Papadopoulou N, Kobayashi T, Tsukagoshi N, Kato M, Brakhage AA (2004) A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear localization signal: piggy back transport of the pre-assembled complex to the nucleus. J Mol Biol 342:515–524

    Article  PubMed  CAS  Google Scholar 

  • Tarpey PS, Raymond FL, Nguyen LS et al (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39:1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Tegay DH, Chan KK, Leung L, Wang C, Burkett S, Stone G, Stanyon R, Toriello HV, Hatchwell E (2009) Toriello-Carey syndrome in a patient with a de novo balanced translocation [46, XY, t(2;14)(q33;q22)] interrupting SATB2. Clin Genet 75:259–264

    Article  PubMed  CAS  Google Scholar 

  • To-Figueras J, Ducamp S, Clayton J, Badenas C, Delaby C, Ged C, Lyoumi S, Gouya L, de Verneuil H, Beaumont C, Ferreira GC, Deybach JC, Herrero C, Puy H (2011) ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood 118:1443–1451

    Article  PubMed  CAS  Google Scholar 

  • Urquhart J, Black GC, Clayton-Smith J (2009) 4.5 Mb microdeletion in chromosome band 2q33.1 associated with learning disability and cleft palate. Eur J Med Genet 52:454–457

    Article  PubMed  Google Scholar 

  • Van Buggenhout G, Van Ravenswaaij-Arts C, Mc Maas N, Thoelen R, Vogels A, Smeets D, Salden I, Matthijs G, Fryns JP, Vermeesch JR (2005) The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients. Eur J Med Genet 48:276–289

    Article  PubMed  Google Scholar 

  • van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14:535–542

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We like to thank Drs. Gergana Dobreva and Rudolph Grosschedl (Max Planck Institution for Immunobiology and Epigenetics, Freiburg, Germany) for kindly providing the pfos-luc-Wt SATB2 plasmid and Satb2 knockout mice. This study was supported by the Royal Golden Jubilee Ph.D. Program to PL (Grant No PHD/0026/2549); the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; The Thailand Research Fund; Ratchadapiseksomphot Fund (RES560530177-HR), Chulalongkorn University Centenary Academic Development Project (CU56-HR05), and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (HR1163A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanya Suphapeetiporn or Marjan Huizing.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leoyklang, P., Suphapeetiporn, K., Srichomthong, C. et al. Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene. Hum Genet 132, 1383–1393 (2013). https://doi.org/10.1007/s00439-013-1345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1345-9

Keywords

Navigation