Skip to main content

Advertisement

Log in

Co-segregation of trichorhinophalangeal syndrome with a t(8;13)(q23.3;q21.31) familial translocation that appears to increase TRPS1 gene expression

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Trichorhinophalangeal syndrome type I (TRPS I) is a rare autosomal dominant syndrome caused by haploinsufficiency of TRPS1 due to point mutations or deletions. Here, we report the first familial TRPS I due to a t(8;13)(q23.3;q21.31) translocation breakpoint <100 kb from the 5′ end of TRPS1. Based on the additional abnormalities observed exclusively in the index patient that are mainly compatible with clinical features of TRPS, her phenotype was defined as expanded TRPS I including brain malformations and intellectual disability. Initial analyses did not reveal any genetic defect affecting TRPS1 or any genomic alteration within the breakpoint regions or elsewhere in the genome. The pathogenic chromosome 8q23.3 breakpoint is at position g.116,768,309_116,768,310 within a transposon type I element, 87 kb from the TRPS1 5′ end. The 13q21.31 breakpoint is within a tandem repeat region at position g.65,101,509_65,101,510 (genome assembly GRCh37/hg19). This breakpoint is flanked by protocadherin 9 (PCDH9) and protocadherin 20 (PCDH20). As an outcome of the translocation, an evolutionarily conserved non-coding VISTA enhancer element from 13q21.31 is placed within the TRPS1 5′ region, 1,294 bp from the breakpoint. The increased expression of TRPS1 found by three independent methods is most probably translocation allele derived and driven by the translocated enhancer element. The index patient’s expanded phenotype presumably involves the epithelial-to-mesenchymal transition pathway that may be due to TRPS1 overexpression. Together, these findings support that the reported translocation-associated phenotypes are “cis-ruption” and TRPS1 overexpression related, the latter most probably caused by the novel enhancer element in the TRPS1 5′ region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brandt CA, Lüdecke H-J, Hindkiaer J, Stromkjaer H, Pinkel D, Herlin T, Bolund L, Friedrich U (1997) A de novo complex t(7;13;8) translocation with a deletion in the TRPS gene region. Hum Genet 100:334–338

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Bao Y, Litton J, Xiao L, Zhang HZ, Warneke CL, Wu Y, Shen X, Wu S, Katz RL, Sahin A, Bondy M, Murray JL, Radvanyi L (2011) Expression and relevance of TRPS-1: a new GATA transcription factor in breast cancer. Horm Cancer 2:132–143

    Article  CAS  PubMed  Google Scholar 

  • David D, Cardoso J, Marques B, Marques R, Silva ED, Santos H, Boavida MG (2003) Molecular characterization of a familial translocation implicates disruption of HDAC9 and possible position effect on TGFB2 in the pathogenesis of Peters’ anomaly. Genomics 81:489–503

    Article  CAS  PubMed  Google Scholar 

  • David D, Marques B, Ferreira C, Vieira P, Corona-Rivera A, Ferreira JC, van Bokhoven H (2009) Characterization of two ectrodactyly-associated translocation breakpoints separated by 2.5 Mb on chromosome 2q14.1–q14.2. Eur J Hum Genet 17:1024–1033

    Article  CAS  PubMed  Google Scholar 

  • De Gregori M, Ciccone R, Magini P, Pramparo T, Gimelli S, Messa J, Novara F, Vetro A, Rossi E, Maraschio P, Bonaglia MC, Anichini C, Ferrero GB, Silengo M, Fazzi E, Zatterale A, Fischetto R, Previderé C, Belli S, Turci A, Calabrese G, Bernardi F, Meneghelli E, Riegel M, Rocchi M, Guerneri S, Lalatta F, Zelante L, Romano C, Fichera M, Mattina T, Arrigo G, Zollino M, Giglio S, Lonardo F, Bonfante A, Ferlini A, Cifuentes F, Van Esch H, Backx L, Schinzel A, Vermeesch JR, Zuffardi O (2007) Cryptic deletions are a common finding in ‘‘balanced’’ reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet 44:750–762

    Article  PubMed  Google Scholar 

  • Fantauzzo KA, Tadin-Strapps M, You Y, Mentzer SE, Baumeister FA, Cianfarani S, Van Maldergem L, Warburton D, Sundberg JP, Christiano AM (2008) A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Hum Mol Genet 17:3539–3551

    Article  CAS  PubMed  Google Scholar 

  • Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJ (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia 17:2318–2357

    Article  CAS  PubMed  Google Scholar 

  • Gai Z, Gui T, Muragaki Y (2011) The function of TRPS1 in the development and differentiation of bone, kidney, and hair follicles. Histol Histopathol 26:915–921

    CAS  PubMed  Google Scholar 

  • Ge B, Gurd S, Gaudin T, Dore C, Lepage P, Harmsen E, Hudson TJ, Pastinen T (2005) Survey of allelic expression using EST mining. Genome Res 15:1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Huerta LM, Cuevas-Covarrubias SA, Messina-Baas OM (2007) Tricho-rhino-phalangeal type I syndrome and mental retardation: identification of a novel mutation in the TRPS1 gene. J Dermatol Sci 48:61–63

    Article  CAS  PubMed  Google Scholar 

  • Hamers A, Jongbloet P, Peeters G, Fryns JP, Geraedts J (1990) Severe mental retardation in a patient with tricho-rhino-phalangeal syndrome type I and 8q deletion. Eur J Pediatr 49:618–620

    Article  Google Scholar 

  • Hilton MJ, Gutiérrez L, Zhang L, Moreno PA, Reddy M, Brown N, Tan Y, Hill A, Wells DE (2001) An integrated physical map of 8q22–q24: use in positional cloning and deletion analysis of Langer–Giedion syndrome. Genomics 71:192–199

    Article  CAS  PubMed  Google Scholar 

  • Kallio MA, Tuimala JT, Hupponen T, Klemelä P, Gentile M, Scheinin I, Koski M, Käki J, Korpelainen EI (2011) Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics 12:507. doi:10.1186/1471-2164-12-507

    Article  PubMed  Google Scholar 

  • Kim SY, Yasuda S, Tanaka H, Yamagata K, Kim H (2011) Non-clustered protocadherin. Cell Adh Migr 5:97–105

    Article  PubMed  Google Scholar 

  • Kunath M, Lüdecke HJ, Vortkamp A (2002) Expression of Trps1 during mouse embryonic development. Mech Dev 119(Suppl 1):S117–S120

    Article  PubMed  Google Scholar 

  • Lüdecke H-J, Schaper J, Meinecke P, Momeni P, Groß S, von Holtum D, Hirche H, Abramowicz MJ, Albrecht B, Apacik C, Christen H-J, Claussen U, Devriendt K, Fastnacht E, Forderer A, Friedrich U, Goodship THJ, Greiwe M, Hamm H, Hennekam RCM, Hinkel GK, Hoeltzenbein M, Kayserili H, Majewski F, Mathieu M, McLeod R, Midro AT, Moog U, Nagai T, Niikawa N, Orstavik KH, Plöchl E, Seitz C, Schmidtke J, Tranebjærg L, Tsukahara M, Wittwer B, Zabel B, Gillessen-Kaesbach G, Horsthemke B (2001) Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet 68:81–91

    Article  PubMed  Google Scholar 

  • Marchau FE, Van Roy BC, Parizel PM, Lambert JR, De Canck I, Leroy JG, Gevaert CM, Willems PJ, Dumon JE (1993) Tricho-rhino-phalangeal syndrome type I (TRP I) due to an apparently balanced translocation involving 8q24. Am J Med Genet 45:450–455

    Article  CAS  PubMed  Google Scholar 

  • Momeni P, Glöckner G, Schmidt O, von Holtum D, Albrecht B, Gillessen-Kaesbach G, Hennekam R, Meinecke P, Zabel B, Rosenthal A, Horsthemke B, Lüdecke H-J (2000) Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 24:71–74

    Article  CAS  PubMed  Google Scholar 

  • Napierala D, Sun Y, Maciejewska I, Bertin TK, Dawson B, D’Souza R, Qin C, Lee B (2012) Transcriptional repression of the Dspp gene leads to dentinogenesis imperfecta phenotype in Col1a1-Trps1 transgenic mice. J Bone Miner Res 27:1735–1745

    Article  CAS  PubMed  Google Scholar 

  • Naritomi K, Hirayama K (1989) Partial trisomy of distal 8q derived from mother with mosaic 8q23.3 > 24.13 deletion, and relatively mild expression of trichorhinophalangeal syndrome I. Hum Genet 82:199–201

    Article  CAS  PubMed  Google Scholar 

  • Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73:320–326

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Tonoki H, Soejima H, Niikawa N (1997) A 4 Mb cryptic deletion associated with inv(8)(q13.1q24.11) in a patient with trichorhinophalangeal syndrome type I. J Med Genet 34:335–339

    Article  CAS  PubMed  Google Scholar 

  • Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF, Dornan D (2011) TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4:ra41

    Article  PubMed  Google Scholar 

  • Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767

    Article  CAS  PubMed  Google Scholar 

  • Unger K, Wienberg J, Riches A, Hieber L, Walch A, Brown A, O’Brien PC, Briscoe C, Gray L, Rodriguez E, Jackl G, Knijnenburg J, Tallini G, Ferguson-Smith M, Zitzelsberger H (2010) Novel gene rearrangements in transformed breast cells identified by high-resolution breakpoint analysis of chromosomal aberrations. Endocr Relat Cancer 17:87–98

    Article  CAS  PubMed  Google Scholar 

  • Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA Enhancer Browser-a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–D92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the family members for their involvement in this study. We thank the Microarray Core at the UCSF Comprehensive Cancer Center, the Chrombios Molecular Cytogenetics GmbH and the Gulbenkian Institute of Sciences for technical assistance. We are grateful to Stefan Imreh and João Lavinha for their comments on the manuscript. This project was partially supported by Fundação para a Ciência e a Tecnologia research Grants PTDC/SAU-GMG/118140/2010 and PEst-OE/SAU/UI0009/2011.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezső David.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, D., Marques, B., Ferreira, C. et al. Co-segregation of trichorhinophalangeal syndrome with a t(8;13)(q23.3;q21.31) familial translocation that appears to increase TRPS1 gene expression. Hum Genet 132, 1287–1299 (2013). https://doi.org/10.1007/s00439-013-1333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1333-0

Keywords

Navigation