Skip to main content

Advertisement

Log in

Transmission ratio distortion: review of concept and implications for genetic association studies

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Transmission ratio distortion (TRD) occurs when one of the two alleles from either parent is preferentially transmitted to the offspring. This leads to a statistical departure from the Mendelian law of inheritance, which states that each of the two parental alleles is transmitted to offspring with a probability of 0.5. A number of mechanisms are thought to induce TRD such as meiotic drive, gametic competition, and embryo lethality. TRD has been extensively studied in animals, but the prevalence of TRD in humans remains largely unknown. Nevertheless, understanding the TRD phenomenon and taking it into consideration in many aspects of human genetics has potential benefits that have not been sufficiently emphasized in the current literature. In this review, we discuss the importance of TRD in three distinct but related fields of genetics: developmental genetics which studies the genetic abnormalities in zygotic and embryonic development, statistical genetics/genetic epidemiology which utilizes population study designs and statistical models to interpret the role of genes in human health, and population genetics which is concerned with genetic diversity in populations in an evolutionary context. From the perspective of developmental genetics, studying TRD leads to the identification of the processes and mechanisms for differential survival observed in embryos. As a result, it is a genetic force which affects allele frequency at the population, as well as, at the organismal level. Therefore, it has implications on genetic diversity of the population over time. From the perspective of genetic epidemiology, the TRD influence on a marker locus is a confounding factor which has to be adequately dealt with to correctly interpret linkage or association study results. These aspects are developed in this review. In addition to these theoretical notions, a brief summary of the empirical evidence of the TRD phenomenon in human and mouse studies is provided. The objective of our paper is to show the potentially important role of TRD in many areas of genetics, and to create an incentive for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aparicio JM, Ortego J, Calabuig G, Cordero PJ (2010) Evidence of subtle departures from Mendelian segregation in a wild lesser kestrel (Falco naumanni) population. Heredity 105:213–219

    Article  PubMed  CAS  Google Scholar 

  • Bauer H, Véron N, Willert J, Herrmann BG (2007) The t-complex-encoded guanine nucleotide exchange factor Fgd2 reveals that two opposing signaling pathways promote transmission ratio distortion in the mouse. Genes Dev 21:143–147. doi:10.1101/gad.414807

    Article  PubMed  CAS  Google Scholar 

  • Bauer H, Schindler S, Charron Y, Willert J, Kusecek B, Herrmann BG (2012) The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-mendelian inheritance. PLoS Genet 8. doi:10.1371/journal.pgen.1002567

  • Becker T, Jansen S, Tamm S, Wienker TF, Tummler B, Stanke F (2007) Transmission ratio distortion and maternal effects confound the analysis of modulators of cystic fibrosis disease severity on 19q13. Eur J Hum Genet 15:774–778

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt C, Fialho RN, Santos C, Montiel R, Bruges-Armas J, Maciel P, Lima M (2008) Segregation distortion of wild-type alleles at the Machado-Joseph disease locus: a study in normal families from the Azores islands (Portugal). J Hum Genet 53:333–339. doi:10.1007/s10038-008-0261-7

    Article  PubMed  CAS  Google Scholar 

  • Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, Stein T, Neil J, Cameron ER (2010) Runx2 in normal tissues and cancer cells: a developing story. Blood Cells Mol Dis 45:117–123. doi:10.1016/j.bcmd.2010.05.007

    Article  PubMed  CAS  Google Scholar 

  • Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40:695–701

    Article  PubMed  CAS  Google Scholar 

  • Botta A, Tacconelli A, Bagni I, Giardina E, Bonifazi E, Pietropolli A, Clementi M, Novelli G (2005) Transmission ratio distortion in the spinal muscular atrophy locus: data from 314 prenatal tests. Neurology 65:1631–1635

    Article  PubMed  CAS  Google Scholar 

  • Casellas J, Gularte RJ, Farber CR, Varona L, Mehrabian M, Schadt EE, Lusis AJ, Attie AD, Yandell BS, Medrano JF (2012) Genome scans for transmission ratio distortion regions in mice. Genetics 191:247–259. doi:10.1534/genetics.111.135988

    Article  PubMed  CAS  Google Scholar 

  • Chevin LM, Hospital F (2006) The hitchhiking effect of an autosomal meiotic drive gene. Genetics 173:1829–1832. doi:10.1534/genetics.105.052977

    Article  PubMed  CAS  Google Scholar 

  • Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425

    Article  PubMed  CAS  Google Scholar 

  • Croteau S, Andrade MF, Huang F, Greenwood CM, Morgan K, Naumova AK (2002) Inheritance patterns of maternal alleles in imprinted regions of the mouse genome at different stages of development. Mammal Genome 13:24–29

    Article  CAS  Google Scholar 

  • Crow JF (1988) The ultraselfish gene. Genetics 118:389

    PubMed  CAS  Google Scholar 

  • De Rango F, Dato S, Bellizzi D, Rose G, Marzi E, Cavallone L, Franceschi C, Skytthe A, Jeune B, Cournil A (2007) A novel sampling design to explore gene-longevity associations: the ECHA study. Eur J Hum Genet 16:236–242

    Article  PubMed  Google Scholar 

  • Dean NL, Loredo-Osti JC, Fujiwara TM, Morgan K, Tan SL, Naumova AK, Ao A (2006) Transmission ratio distortion in the myotonic dystrophy locus in human preimplantation embryos. Eur J Hum Genet 14:299–306

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Zhang D, Richards E, Tang X, Fang J, Long F, Wang Y (2009) Constructing an initial map of transmission distortion based on high density HapMap SNPs across the human autosomes. J Genet Genomics 36:703–709. doi:10.1016/s1673-8527(08)60163-0

    Article  PubMed  CAS  Google Scholar 

  • Eaves IA, Bennett ST, Forster P, Ferber KM, Ehrmann D, Wilson AJ, Bhattacharyya S, Ziegler AG, Brinkmann B, Todd JA (1999) Transmission ratio distortion at the INS-IGF2 VNTR. Nat Genet 22:324

    Article  PubMed  CAS  Google Scholar 

  • Evans D, Morris A, Cardon L, Sham P (2006) A note on the power to detect transmission distortion in parent-child trios via the transmission disequilibrium test. Behav Genet 36:947–950

    Article  PubMed  CAS  Google Scholar 

  • Eversley CD, Clark T, Xie Y, Steigerwalt J, Bell TA, de Villena FP, Threadgill DW (2010) Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross. BMC Genet 11:98. doi:10.1186/1471-2156-11-98

    Article  PubMed  Google Scholar 

  • Friedrichs F, Brescianini S, Annese V, Latiano A, Berger K, Kugathasan S, Broeckel U, Nikolaus S, Daly MJ, Schreiber S, Rioux JD, Stoll M (2006) Evidence of transmission ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Hum Genet 119:305–311

    Article  PubMed  Google Scholar 

  • Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Human Genet 82:100–112

    Article  CAS  Google Scholar 

  • Greenwood CM, Morgan K (2000) The impact of transmission-ratio distortion on allele sharing in affected sibling pairs. Am J Hum Genet 66:2001–2004

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Grafen A (1991) Genetic scrambling as a defence against meiotic drive. J Theor Biol 153:531–558

    Article  PubMed  CAS  Google Scholar 

  • Hanchard N, Rockett K, Udalova I, Wilson J, Keating B, Koch O, Nijnik A, Diakite M, Herbert M, Kwiatkowski D (2005) An investigation of transmission ratio distortion in the central region of the human MHC. Genes Immun 7:51–58

    Article  Google Scholar 

  • Hastings IM (1991) Germline selection: population genetic aspects of the sexual/asexual life cycle. Genetics 129:1167–1176

    PubMed  CAS  Google Scholar 

  • Haston CK, Humes DG, Lafleur M (2007) X chromosome transmission ratio distortion in Cftr ± intercross-derived mice. BMC Genet 8:23. doi:10.1186/1471-2156-8-23

    Article  PubMed  Google Scholar 

  • Henckaerts L, Vlietinck R, Derom C, Boonen S, Rutgeerts P, Vermeire S (2010) Transmission ratio distortion of DLG5 R30Q: evidence for prenatal selection? Inflamm Bowel Dis 16:910–911. doi:10.1002/ibd.21109

    Article  PubMed  Google Scholar 

  • Honeywell C, Argiropoulos B, Douglas S, Blumenthal AL, Allanson J, McGowan-Jordan J, McCready ME (2012) Apparent transmission distortion of a pericentric chromosome one inversion in a large multi-generation pedigree. Am J Med Genet A 158A:1262–1268. doi:10.1002/ajmg.a.35286

    Article  PubMed  Google Scholar 

  • Huang L, Labbe A, Infante-Rivard C (2011) Impact of transmission ratio distortion on the interpretation of genetic association studies and evolution of population parameters. In: 6th Annual Genetic Epidemiology and Statistical Genetic Meeting

  • Hurst GD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606. doi:10.1038/35084545

    Article  PubMed  CAS  Google Scholar 

  • Imboden M, Swan H, Denjoy I, Van Langen IM, Latinen-Forsblom PJ, Napolitano C, Fressart V, Breithardt G, Berthet M, Priori S, Hainque B, Wilde AAM, Schulze-Bahr E, Feingold J, Guicheney P (2006) Female predominance and transmission distortion in the long-QT syndrome. N Engl J Med 355:2744–2751

    Article  PubMed  CAS  Google Scholar 

  • Infante-Rivard C, Weinberg CR (2005) Parent-of-origin transmission of thrombophilic alleles to intrauterine growth-restricted newborns and transmission-ratio distortion in unaffected newborns. Am J Epidemiol 162:891–897. doi:10.1093/aje/kwi293

    Article  PubMed  Google Scholar 

  • Klopocki E, Lohan S, Doelken SC, Stricker S, Ockeloen CW, Soares Thiele de Aguiar R, Lezirovitz K, Mingroni Netto RC, Jamsheer A, Shah H, Kurth I, Habenicht R, Warman M, Devriendt K, Kordass U, Hempel M, Rajab A, Makitie O, Naveed M, Radhakrishna U, Antonarakis SE, Horn D, Mundlos S (2012) Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet 49:119–125. doi:10.1136/jmedgenet-2011-100409

    Article  PubMed  CAS  Google Scholar 

  • Kryukov GV, Pennacchio LA, Sunyaev SR (2007) Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Human Genet 80:727–739

    Article  CAS  Google Scholar 

  • Lange K (1997) Mathematical and statistical methods for genetic analysis. Springer, New York

    Google Scholar 

  • LeMaire-Adkins R, Hunt PA (2000) Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156:775

    PubMed  CAS  Google Scholar 

  • Li B, Leal SM (2009) Discovery of rare variants via sequencing: implications for the design of complex trait association studies. PLoS Genet 5:e1000481

    Article  PubMed  Google Scholar 

  • Liu LY, Schaub MA, Sirota M, Butte AJ (2012) Transmission distortion in Crohn’s disease risk gene ATG16L1 leads to sex difference in disease association. Inflamm Bowel Dis 18:312–322. doi:10.1002/ibd.21781

    Article  PubMed  Google Scholar 

  • Magee AC, Hughes AE (1998) Segregation distortion in myotonic dystrophy. J Med Genet 35:1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21. doi:10.1038/456018a

    Article  PubMed  CAS  Google Scholar 

  • Martin-DeLeon PA, Zhang H, Morales CR, Zhao Y, Rulon M, Barnoski BL, Chen H, Galileo DS (2005) Spam1-associated transmission ratio distortion in mice: elucidating the mechanism. Reprod Biol Endocrinol 3:32. doi:10.1186/1477-7827-3-32

    Article  PubMed  Google Scholar 

  • Meyer WK, Arbeithuber B, Ober C, Ebner T, Tiemann-Boege I, Hudson RR, Przeworski M (2012) Evaluating the evidence for transmission distortion in human pedigrees. Genetics 191:215–232. doi:10.1534/genetics.112.139576

    Article  PubMed  CAS  Google Scholar 

  • Naumova A, Olien L, Bird L, Slamka C, Fonseca M, Verner A, Wang M, Leppert M, Morgan K, Sapienza C (1995) Transmission ratio distortion of X chromosomes among male offspring of females with skewed X inactivation. Dev Genet 17:198–205

    Article  PubMed  CAS  Google Scholar 

  • Naumova AK, Leppert M, Barker DF, Morgan K, Sapienza C (1998) Parental origin-dependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet 62:1493–1499

    Article  PubMed  CAS  Google Scholar 

  • Naumova AK, Greenwood CM, Morgan K (2001) Imprinting and deviation from Mendelian transmission ratios. Genome 44:311–320

    Article  PubMed  CAS  Google Scholar 

  • Novitski E (1951) Non-random disjunction in Drosophila. Genetics 36:267

    PubMed  CAS  Google Scholar 

  • Pardo-Manuel de Villena F, Sapienza C (2001) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12:331–339. doi:10.1007/s003350040003

    Article  PubMed  CAS  Google Scholar 

  • Paterson AD, Petronis A (1999) Transmission ratio distortion in females on chromosome 10p11 p15. Am J Med Genet 88:657–661

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Sun L, Liu XQ (2003) Transmission ratio distortion in families from the Framingham Heart Study. BMC Genet 4:S48

    Article  PubMed  Google Scholar 

  • Paterson A, Waggott D, Schillert A, Infante-Rivard C, Bull S, Yoo Y, Pinnaduwage D (2009) Transmission-ratio distortion in the Framingham Heart Study 2009. BioMed Central Ltd., London, p S51

  • Polanski A (1998) Dynamic balance of segregation distortion and selection maintains normal allele sizes at the myotonic dystrophy locus* 1. Math Biosci 147:93–112

    Article  PubMed  CAS  Google Scholar 

  • Riess O, Epplen JT, Amoiridis G, Przuntek H, Schols L (1997) Transmission distortion of the mutant alleles in spinocerebellar ataxia. Hum Genet 99:282–284

    Article  PubMed  CAS  Google Scholar 

  • Santos PS, Hohne J, Schlattmann P, Konig IR, Ziegler A, Uchanska-Ziegler B (2009) Assessment of transmission distortion on chromosome 6p in healthy individuals using tagSNPs. Eur J Hum Genet 17:1182–1189. doi:10.1038/ejhg.2009.16

    Article  PubMed  CAS  Google Scholar 

  • Sazhenova EA, Lebedev IN (2008) Epimutations of the KCNQ1OT1 imprinting center of chromosome 11 in early human embryo lethality. Genetika 44:1609–1616

    PubMed  CAS  Google Scholar 

  • Schulz R, Underkoffler LA, Collins JN, Oakey RJ (2006) Nondisjunction and transmission ratio distortion of Chromosome 2 in a (2.8) Robertsonian translocation mouse strain. Mamm Genome 17:239–247. doi:10.1007/s00335-005-0126-8

    Article  PubMed  CAS  Google Scholar 

  • Shemer R, Birger Y, Riggs AD, Razin A (1997) Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc Natl Acad Sci USA 94:10267–10272

    Article  PubMed  CAS  Google Scholar 

  • Shoubridge C, Gardner A, Schwartz CE, Hackett A, Field M, Gecz J (2012) Is there a Mendelian transmission ratio distortion of the c.429_452dup (24 bp) polyalanine tract ARX mutation? Eur J Human Genet. doi:10.1038/ejhg.2012.61

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506

    PubMed  CAS  Google Scholar 

  • Sturtevant A (1936) Preferential segregation in triplo-IV females of Drosophila melanogaster. Genetics 21:444

    PubMed  CAS  Google Scholar 

  • Taveau M, Stockholm D, Marchand S, Roudaut C, Le Bert M, Richard I (2004) Bidirectional transcriptional activity of the Pgk1 promoter and transmission ratio distortion in Capn3-deficient mice. Genomics 84:592–595. doi:10.1016/j.ygeno.2004.04.011

    Article  PubMed  CAS  Google Scholar 

  • The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320. doi:10.1038/nature04226

    Article  Google Scholar 

  • Underkoffler LA, Mitchell LE, Abdulali ZS, Collins JN, Oakey RJ (2005) Transmission ratio distortion in offspring of mouse heterozygous carriers of a (7.18) Robertsonian translocation. Genetics 169:843–848. doi:10.1534/genetics.104.032755

    Article  PubMed  Google Scholar 

  • Veron N, Bauer H, Weisse AY, Luder G, Werber M, Herrmann BG (2009) Retention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the t complex responder. Genes Dev 23:2705–2710. doi:10.1101/gad.553009

    Article  PubMed  CAS  Google Scholar 

  • Weinberg CR (1999) Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am J Hum Genet 65:229–235

    Article  PubMed  CAS  Google Scholar 

  • Westendorp R, van Dunne FM, Kirkwood T, Helmerhorst FM, Huizinga T (2001) Optimizing human fertility and survival. Nat Med 7:873

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Hao L, Han Z, Gao S, Latham KE, de Villena FPM, Sapienza C (2005) Maternal transmission ratio distortion at the mouse Om locus results from meiotic drive at the second meiotic division. Genetics 170:327–334. doi:10.1534/genetics.104.039479

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Andrade MF, Labialle S, Moussette S, Geneau G, Sinnett D, Belisle A, Greenwood CM, Naumova AK (2008) Parental effect of DNA (cytosine-5) methyltransferase 1 on grandparental-origin-dependent transmission ratio distortion in mouse crosses and human families. Genetics 178:35–45

    Article  PubMed  CAS  Google Scholar 

  • Zimmering S (1955) A genetic study of segregation in a translocation heterozygote in Drosophila. Genetics 40:809

    PubMed  CAS  Google Scholar 

  • Zollner S, Wen X, Hanchard NA, Herbert MA, Ober C, Pritchard JK (2004) Evidence for extensive transmission distortion in the human genome. Am J Hum Genet 74:62–72

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study complies with the current laws of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Infante-Rivard.

Additional information

All authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L.O., Labbe, A. & Infante-Rivard, C. Transmission ratio distortion: review of concept and implications for genetic association studies. Hum Genet 132, 245–263 (2013). https://doi.org/10.1007/s00439-012-1257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1257-0

Keywords

Navigation