Skip to main content

Advertisement

Log in

Linkage analysis for plasma amyloid beta levels in persons with hypertension implicates Aβ-40 levels to presenilin 2

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Plasma concentrations of Aβ40 and Aβ42 rise with age and are increased in people with mutations that cause early-onset Alzheimer’s disease (AD). Amyloid beta (Aβ) plasma levels were successfully used as an (endo)phenotype for gene discovery using a linkage approach in families with dominant forms of disease. Here, we searched for loci involved in Aβ plasma levels in a series of non-demented patients with hypertension in the Erasmus Rucphen Family study. Aβ40 and Aβ42 levels were determined in 125 subjects with severe hypertension. All patients were genotyped with a 6,000 single nucleotide polymorphisms (SNPs) illumina array designed for linkage analysis. We conducted linkage analysis of plasma Aβ levels. None of the linkage analyses yielded genome-wide significant logarithm of odds (LOD) score over 3.3, but there was suggestive evidence for linkage (LOD > 1.9) for two regions: 1q41 (LOD = 2.07) and 11q14.3 (LOD = 2.97), both for Aβ40. These regions were followed up with association analysis in the study subjects and in 320 subjects from a population-based cohort. For the Aβ40 region on chromosome 1, association of several SNPs was observed at the presenilin 2 gene (PSEN2) (p = 2.58 × 10−4 for rs6703170). On chromosome 11q14-21, we found some association (p = 3.1 × 10−3 for rs2514299). This linkage study of plasma concentrations of Aβ40 and Aβ42 yielded two suggestive regions, of which one points toward a known locus for familial AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  CAS  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Anderson BM, Schnetz-Boutaud NC, Bartlett J, Wotawa AM, Wright HH, Abramson RK, Cuccaro ML, Gilbert JR, Pericak-Vance MA, Haines JL (2009) Examination of association of genes in the serotonin system to autism. Neurogenetics 10:209–216

    Article  PubMed  CAS  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  PubMed  CAS  Google Scholar 

  • Aznar S, Knudsen GM (2011) Depression and Alzheimer’s disease: is stress the initiating factor in a common neuropathological cascade? J Alzheimers Dis 23:177–193

    PubMed  Google Scholar 

  • Bettens K, Sleegers K, Van Broeckhoven C (2010) Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 19:R4–R11

    Article  PubMed  CAS  Google Scholar 

  • Demirkan A, Penninx BW, Hek K, Wray NR, Amin N, Aulchenko YS, van Dyck R, de Geus EJ, Hofman A, Uitterlinden AG, Hottenga JJ, Nolen WA, Oostra BA, Sullivan PF, Willemsen G, Zitman FG, Tiemeier H, Janssens AC, Boomsma DI, van Duijn CM, Middeldorp CM (2011) Genetic risk profiles for depression and anxiety in adult and elderly cohorts. Mol Psychiatry 16:773–783

    Article  PubMed  CAS  Google Scholar 

  • Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WO (2007) A genome-wide association study of global gene expression. Nat Genet 39:1202–1207

    Article  PubMed  CAS  Google Scholar 

  • Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290:2303–2304

    Article  PubMed  CAS  Google Scholar 

  • Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Adamson J, Schaid DJ, Blangero J, Hutton M, Younkin SG (2001) Heritability of plasma amyloid beta in typical late-onset Alzheimer’s disease pedigrees. Genet Epidemiol 21:19–30

    Article  PubMed  CAS  Google Scholar 

  • Ertekin-Taner N, Younkin LH, Yager DM, Parfitt F, Baker MC, Asthana S, Hutton ML, Younkin SG, Graff-Radford NR (2008) Plasma amyloid beta protein is elevated in late-onset Alzheimer disease families. Neurology 70:596–606

    Article  PubMed  CAS  Google Scholar 

  • Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, Read T, Murphy P, Blaveri E, McQuillin A, Petursson H, Curtis D (2001) Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 68:661–673

    Article  PubMed  CAS  Google Scholar 

  • Hansson O, Zetterberg H, Vanmechelen E, Vanderstichele H, Andreasson U, Londos E, Wallin A, Minthon L, Blennow K (2010) Evaluation of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 31:357–367

    Article  PubMed  CAS  Google Scholar 

  • Hofman A, Breteler MM, van Duijn CM, Krestin GP, Pols HA, Stricker BH, Tiemeier H, Uitterlinden AG, Vingerling JR, Witteman JC (2007) The Rotterdam Study: objectives and design update. Eur J Epidemiol 22:819–829

    Article  PubMed  Google Scholar 

  • Jayadev S, Case A, Eastman AJ, Nguyen H, Pollak J, Wiley JC, Moller T, Morrison RS, Garden GA (2010) Presenilin 2 is the predominant gamma-secretase in microglia and modulates cytokine release. PLoS ONE 5:e15743

    Article  PubMed  CAS  Google Scholar 

  • Kehoe PG, Miners S, Love S (2009) Angiotensins in Alzheimer’s disease—friend or foe? Trends Neurosci 32:619–628

    Article  PubMed  CAS  Google Scholar 

  • Kester MI, Verwey NA, van Elk EJ, Scheltens P, Blankenstein MA (2010) Evaluation of plasma Abeta40 and Abeta42 as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 31:539–540

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Singh S, Theuns J, Van Broeck B, Pirici D, Vennekens K, Corsmit E, Cruts M, Dermaut B, Wang R, Van Broeckhoven C (2006) Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27:686–695

    Article  PubMed  CAS  Google Scholar 

  • Lachno DR, Vanderstichele H, De GG, Kostanjevecki V, De Meyer G, Siemers ER, Willey MB, Bourdage JS, Konrad RJ, Dean RA (2009) The influence of matrix type, diurnal rhythm and sample collection and processing on the measurement of plasma beta-amyloid isoforms using the INNO-BIA plasma Abeta forms multiplex assay. J Nutr Health Aging 13:220–225

    Article  PubMed  CAS  Google Scholar 

  • Lambert JC, Schraen-Maschke S, Richard F, Fievet N, Rouaud O, Berr C, Dartigues JF, Tzourio C, Alperovitch A, Buee L, Amouyel P (2009) Association of plasma amyloid beta with risk of dementia: the prospective Three-City Study. Neurology 73:847–853

    Article  PubMed  CAS  Google Scholar 

  • Lambert JC, Dallongeville J, Ellis KA, Schraen-Maschke S, Lui J, Laws S, Dumont J, Richard F, Cottel D, Berr C, Ames D, Masters CL, Rowe CC, Szoeke C, Tzourio C, Dartigues JF, Buee L, Martins R, Amouyel P (2011) Association of plasma Abeta peptides with blood pressure in the elderly. PLoS ONE 6:e18536

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834

    Article  PubMed  Google Scholar 

  • Liu F, Arias-Vasquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, Heutink P, Van Broeckhoven C, Oostra BA, van Duijn CM (2007) A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 81:17–31

    Article  PubMed  CAS  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP, LeVine H III (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19:311–323

    PubMed  Google Scholar 

  • Petit J, Boisseau P, Taine L, Gauthier B, Arveiler B (1999) A YAC contig encompassing the 11q14.3 breakpoint of a translocation associated with schizophrenia, and including the tyrosinase gene. Mamm Genome 10:649–652

    Article  PubMed  CAS  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    Article  PubMed  CAS  Google Scholar 

  • Schol-Gelok S, Janssens AC, Tiemeier H, Liu F, Lopez-Leon S, Zorkoltseva IV, Axenovich TI, van Swieten JC, Uitterlinden AG, Hofman A, Aulchenko YS, Oostra BA, van Duijn CM (2010) A genome-wide screen for depression in two independent Dutch populations. Biol Psychiatry 68:187–196

    Article  PubMed  Google Scholar 

  • Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C, Wattez A, David JP, Vanmechelen E, Sergheraert C, Delacourte A (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Shah NS, Vidal JS, Masaki K, Petrovitch H, Ross GW, Tilley C, DeMattos RB, Tracy RP, White LR, Launer LJ (2012) Midlife blood pressure, plasma beta-amyloid, and the risk for Alzheimer disease: the Honolulu Asia Aging Study. Hypertension 59:780–786

    Article  PubMed  CAS  Google Scholar 

  • St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, Foncin JF, Montesi M, Bruni A, Sorbi S (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet 2:330–334

    Article  PubMed  CAS  Google Scholar 

  • Takashima A (2009) Amyloid-beta, tau, and dementia. J Alzheimers Dis 17:729–736

    PubMed  CAS  Google Scholar 

  • Thambisetty M, Tripaldi R, Riddoch-Contreras J, Hye A, An Y, Campbell J, Sojkova J, Kinsey A, Lynham S, Zhou Y, Ferrucci L, Wong DF, Lovestone S, Resnick SM (2010) Proteome-based plasma markers of brain amyloid-beta deposition in non-demented older individuals. J Alzheimers Dis 22(4):1099–1109

    Google Scholar 

  • Van Broeckhoven C (1995) Presenilins and Alzheimer disease. Nat Genet 11:230–232

    Article  PubMed  Google Scholar 

  • van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM (2006) Plasma Abeta(1–40) and Abeta(1–42) and the risk of dementia: a prospective case–cohort study. Lancet Neurol 5:655–660

    Article  PubMed  Google Scholar 

  • Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L (2006) Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11:1, 18-1, 28

    Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, Chen TX, Schweitzer AC, Blume JE, Cox NJ, Dolan ME (2008) Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 82:631–640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Netherlands Organization for Scientific Research (NWO), the Internationale Stichting Alzheimer Onderzoek (ISAO), the Hersenstichting Nederland (HSN) and the Centre for Medical Systems Biology (CMSB) in the framework of the Netherlands Genomics Initiative (NGI) and by the Russian Foundation for Basic Research (RFBR). We thank the participants from the Genetic Research in Isolated Populations, Erasmus Rucphen Family, who made this work possible. Also, we thank Petra Veraart for collecting all genealogical data.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All research described in this paper was carried out in compliance with the laws and customs for scientific research in the Netherlands. The Erasmus University Medical Center Medical Ethics Committee approved both the Erasmus Rucphen Family Study and the Rotterdam Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. van Duijn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

439_2012_1210_MOESM1_ESM.pdf

Online resource 1 Linkage plots Figure 1 shows the genome-wide linkage results for each of the individual Aβ measurements, plotting each SNP’s chromosome and position against its calculated LOD/HLOD. Figure 2 zooms in on the regions reaching suggestive linkage on chromosome 1 and 11 (PDF 779 kb)

439_2012_1210_MOESM2_ESM.doc

Online resource 2 Supplementary table. This table shows the association results under the linkage peak for the SNPs with association p < 0.001 to Aβ40 in the ERF directly genotyped set. Beside SNP details and the association p value to Aβ40, also the association p value to Aβ42 is given (DOC 90 kb)

439_2012_1210_MOESM3_ESM.xls

Online resource 3 Meta-analysis results and eQTL data. For both suggestive linkage regions, all SNPs with a meta-analysis association p value of < 0.001 are given. Beside SNP details and meta-analysis results, the file also contains information on eQTL associations for the SNPs from two different eQTL databases (XLS 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim-Verbaas, C.A., Zorkoltseva, I.V., Amin, N. et al. Linkage analysis for plasma amyloid beta levels in persons with hypertension implicates Aβ-40 levels to presenilin 2. Hum Genet 131, 1869–1876 (2012). https://doi.org/10.1007/s00439-012-1210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1210-2

Keywords

Navigation