Skip to main content
Log in

Strong purifying selection against gene conversions in the trypsin genes of primates

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The trypsin gene families of primate species are composed of members who share a remarkable level of sequence similarity. Here, we investigated the gene conversions occurring within the trypsin gene family in five primate species. A total of 36 conversion events, with an average length (±standard deviation) of 1,526 ± 1,124 nucleotides, were detected using two methods. Such extensive gene conversions are likely both the cause and the consequence of the high sequence similarity between primate trypsin genes. In the trypsins encoded by these genes, both the overall amino acid sequences and critical amino acid residues are conserved. Therefore, the numerous long gene conversions we detected between trypsin genes did not alter any of their functionally important amino acid sites. This suggest that, in the trypsin genes of the five primate species studied here, strong purifying selection against gene conversions is occurring in regions containing functionally important residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benovoy D, Drouin G (2009) Ectopic gene conversions in the human genome. Genomics 93:27–32

    Article  PubMed  CAS  Google Scholar 

  • Benovoy D, Morris RT, Morin A, Drouin G (2005) Ectopic gene conversions increase the GC-content of duplicated yeast and Arabidopsis genes. Mol Biol Evol 22:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Birdsell JA (2002) Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19:1181–1197

    Article  PubMed  CAS  Google Scholar 

  • Boni M, Posada D, Feldman M (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Férec C (2000a) Origin and implication of the hereditary pancreatitis-associated N21I mutation in the cationic trypsinogen gene. Hum Genet 106:125–126

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Férec C (2000b) Genes, cloned cDNAs, and proteins of human trypsinogens and pancreatitis-associated cationic trypsinogen mutations. Pancreas 21:57–62

    Article  PubMed  Google Scholar 

  • Chen JM, Férec C (2000c) Molecular basis of hereditary pancreatitis. Eur J Hum Genet 8:473–479

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Férec C (2000d) Gene conversion-like missense mutations in the human cationic trypsinogen gene and insights into the molecular evolution of the human trypsinogen family. Mol Genet Metab 71:463–469

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Férec C (2003) Trypsinogen genes: evolution. In: Cooper DN (ed.) Nature encyclopedia of the human genome, vol. 5, pp 645–650. Nature Publishing Group, London

  • Chen JM, Férec C (2009) Chronic pancreatitis: genetics and pathogenesis. Annu Rev Genomics Hum Genet 10:63–87

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Audrezet MP, Mercier B, Quere C, Férec C (1999) Exclusion of anionic trypsinogen and mesotrypsinogen involvement in hereditary pancreatitis without cationic trypsinogen gene mutations. Scand J Gastroenterol 34:831–832

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Raguenes O, Férec C, Deprez PH, Verellen-Dumoulin C (2000) A CGC > CAT gene conversion-like event resulting in the R122H mutation in the cationic trypsinogen gene and its implication in the genotyping of pancreatitis. J Med Genet 37:E36

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Montier T, Férec C (2001) Molecular pathology and evolutionary and physiological implications of pancreatitis-associated cationic trypsinogen mutations. Hum Genet 109:245–252

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775

    Article  PubMed  CAS  Google Scholar 

  • Drouin G (2002) Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol 55:14–23

    Article  PubMed  CAS  Google Scholar 

  • Drouin G, Prat F, Ell M, Clarke GDP (1999) Detecting and characterizing gene conversions between multigene family members. Mol Biol Evol 16:1369–1390

    Article  PubMed  CAS  Google Scholar 

  • Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101

    PubMed  CAS  Google Scholar 

  • Ezawa K, Ikeo K, Gojobori T, Saitou N (2010) Evolutionary pattern of gene homogenization between primate-specific paralogs after human and macaque speciation using the 4–2-4 method. Mol Biol Evol 27:2152–2171

    Article  PubMed  CAS  Google Scholar 

  • Férec C, Raguenes O, Salomon R, Roche C, Bernard JP, Guillot M, Quere I, Faure C, Mercier B, Audrezet MP, Guillausseau PJ, Dupont C, Munnich A, Bignon JD, Le Bodic L (1999) Mutations in the cationic trypsinogen gene and evidence for genetic heterogeneity in hereditary pancreatitis. J Med Genet 36:228–232

    PubMed  Google Scholar 

  • Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159:907–911

    PubMed  CAS  Google Scholar 

  • Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, Zhang Y, Ulrich C, Ehrlich GD (1997) Whitcomb DC mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology 113:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hsu CH, Zhang Y, Hardison RC, NISC Comparative Sequence Program, Green ED, Miller W (2010) An effective method for detecting gene conversion events in whole genomes. J Comput Biol 17:1281–1297

    Article  PubMed  CAS  Google Scholar 

  • Idris MM, Bhaskar S, Reddy DN, Mani KR, Rao GV (2005) Mutations in anionic trypsinogen gene are not associated with tropical calcific pancreatitis. Gut 54:728–729

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys JA, May CA (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 36:151–156

    Article  PubMed  CAS  Google Scholar 

  • Kudla G, Helwak A, Lipinski L (2004) Gene conversion and GC-content evolution in mammalian Hsp70. Mol Biol Evol 21:1438–1444

    Article  PubMed  CAS  Google Scholar 

  • Le Maréchal C, Masson E, Chen JM, Morel F, Ruszniewski P, Levy P, Férec C (2006) Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat Genet 38:1372–1374

    Article  PubMed  Google Scholar 

  • Löytynoja A, Goldman N (2010) webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform 11:579–586

    Article  Google Scholar 

  • Lukacsovich T, Waldman AS (1999) Suppression of intrachromosomal gene conversion in mammalian cells by small degrees of sequence divergence. Genetics 151:1559–1568

    PubMed  CAS  Google Scholar 

  • Masson E, Le Maréchal C, Chandak GR, Lamoril J, Bezieau S, Mahurkar S, Bhaskar S, Reddy DN, Chen JM, Férec C (2008a) Trypsinogen copy number mutations in patients with idiopathic chronic pancreatitis. Clin Gastroenterol Hepatol 6:82–88

    Article  PubMed  CAS  Google Scholar 

  • Masson E, Le Maréchal C, Delcenserie R, Chen JM, Férec C (2008b) Hereditary pancreatitis caused by a double gain-of-function trypsinogen mutation. Hum Genet 123:521–529

    Article  PubMed  CAS  Google Scholar 

  • McGrath CL, Casola C, Hahn MW (2009) Minimal effect of ectopic gene conversion among recent duplicates in four mammalian genomes. Genetics 182:615–622

    Article  PubMed  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990

    Article  PubMed  CAS  Google Scholar 

  • Morris RT, Drouin G (2007) Ectopic gene conversions in bacterial genomes. Genome 50:975–984

    Article  PubMed  Google Scholar 

  • Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  PubMed  CAS  Google Scholar 

  • Roach JC, Wang K, Gan L, Hood L (1997) The molecular evolution of the vertebrate trypsinogens. J Mol Evol 45:640–652

    Article  PubMed  CAS  Google Scholar 

  • Rowen L, Koop BF, Hood L (1996) The complete 685-kilobase DNA sequence of the human β T cell receptor locus. Science 272:1755–1762

    Article  PubMed  CAS  Google Scholar 

  • Rowen L, Williams E, Glusman G, Linardopoulou E, Friedman C (2005) Interchromosomal segmental duplications explain the unusual structure of PRSS3, the gene for an inhibitor-resistant trypsinogen. Mol Biol Evol 22:1712–1720

    Article  PubMed  CAS  Google Scholar 

  • Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    PubMed  CAS  Google Scholar 

  • Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457

    PubMed  CAS  Google Scholar 

  • Song G, Hsu CH, Riemer C, Miller W (2011) Evaluation of methods for detecting conversion events in gene clusters. BMC Bioinform 12:S45

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Teich N, Nemoda Z, Kohler H, Heinritz W, Mossner J, Keim V, Sahin-Toth M (2005) Gene conversion between functional trypsinogen genes PRSS1 and PRSS2 associated with chronic pancreatitis in a six year-old girl. Hum Mutat 25:343–347

    Article  PubMed  CAS  Google Scholar 

  • Teich N, Rosendahl J, Tóth M, Mössner J, Sahin-Tóth M (2006) Mutations of human cationic trypsinogen (PRSS1) and chronic pancreatitis. Hum Mutat 27:721–730

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Waldman AS, Liskay RM (1988) Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol 8:5350–5357

    PubMed  CAS  Google Scholar 

  • Whitcomb DC (1999) Hereditary pancreatitis: new insights into acute and chronic pancreatitis. Gut 45:317–322

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK Jr, Amann ST, Toskes PP, Liddle R, McGrath K, Uomo G, Post JC, Ehrlich GD (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Luck W, Becker M (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117:7–10

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Sahin-Toth M, Landt O, Chen JM, Kahne T (2006) A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet 38:668–673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their thorough, useful and constructive comments. This work was supported by a Discovery Grant from the Natural Science and Engineering Research Council of Canada to G. D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Drouin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Supplementary material 2 (DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petronella, N., Drouin, G. Strong purifying selection against gene conversions in the trypsin genes of primates. Hum Genet 131, 1739–1749 (2012). https://doi.org/10.1007/s00439-012-1196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1196-9

Keywords

Navigation