Skip to main content

Advertisement

Log in

Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The role that genetics play in response to infection or disease is becoming increasingly clear as we learn more about immunogenetics and host–pathogen interactions. Here we report a genome-wide analysis of the effects of host genetic variation on cytokine responses to vaccinia virus stimulation in smallpox vaccine recipients. Our data show that vaccinia stimulation of immune individuals results in secretion of inflammatory and Th1 cytokines. We identified multiple SNPs significantly associated with variations in cytokine secretion. These SNPs are found in genes with known immune function, as well as in genes encoding for proteins involved in signal transduction, cytoskeleton, membrane channels and ion transport, as well as others with no previously identified connection to immune responses. The large number of significant SNP associations implies that cytokine secretion in response to vaccinia virus is a complex process controlled by multiple genes and gene families. Follow-up studies to replicate these findings and then pursue mechanistic studies will provide a greater understanding of how genetic variation influences vaccine responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcami A, Khanna A, Paul NL, Smith GL (1999) Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors. J Gen Virol 80(Pt 4):949–959

    PubMed  CAS  Google Scholar 

  • Belikoff BG, Hatfield S, Georgiev P, Ohta A, Lukashev D, Buras JA, Remick DG, Sitkovsky M (2011) A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J Immunol 186:2444–2453

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387–396

    Article  PubMed  CAS  Google Scholar 

  • Ben Addi A, Lefort A, Hua X, Libert F, Communi D, Ledent C, Macours P, Tilley SL, Boeynaems JM, Robaye B (2008) Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor. Eur J Immunol 38:1610–1620

    Article  PubMed  CAS  Google Scholar 

  • Bogdan C, Nathan C (1993) Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann N Y Acad Sci 685:713–739

    Article  PubMed  CAS  Google Scholar 

  • Bolusani S, Young BA, Cole NA, Tibbetts AS, Momb J, Bryant JD, Solmonson A, Appling DR (2011) Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. J Biol Chem 286:5166–5174

    Article  PubMed  CAS  Google Scholar 

  • Chang HW, Watson JC, Jacobs BL (1992) The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci USA 89:4825–4829

    Article  PubMed  CAS  Google Scholar 

  • Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RM (1995) Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 270:15974–15978

    Article  PubMed  CAS  Google Scholar 

  • Combadiere B, Boissonnas A, Carcelain G, Lefranc E, Samri A, Bricaire F, Debre P, Autran B (2004) Distinct time effects of vaccination on long-term proliferative and IFN-gamma-producing T cell memory to smallpox in humans. J Exp Med 199:1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R (2003) Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171:4969–4973

    PubMed  CAS  Google Scholar 

  • Earl PL, Moss B, Wyatt LS, Carroll MW (2001) Generation of recombinant vaccinia viruses. Curr Protoc Protein Sci Chapter 5: Unit 513

  • Fenner F (1988) Smallpox and its eradication. World Health Organization, Geneva

    Google Scholar 

  • Fenner F (1989) Risks and benefits of vaccinia vaccine use in the worldwide smallpox eradication campaign. Res Virol 140:465–466 discussion 487–491

    Article  PubMed  CAS  Google Scholar 

  • Foong YY, Jans DA, Rolph MS, Gahan ME, Mahalingam S (2009) Interleukin-15 mediates potent antiviral responses via an interferon-dependent mechanism. Virology 393:228–237

    Article  PubMed  CAS  Google Scholar 

  • Frey SE, Newman FK, Cruz J, Shelton WB, Tennant JM, Polach T, Rothman AL, Kennedy JS, Wolff M, Belshe RB, Ennis FA (2002) Dose-related effects of smallpox vaccine. N Engl J Med 346:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Freyschmidt EJ, Mathias CB, MacArthur DH, Laouar A, Narasimhaswamy M, Weih F, Oettgen HC (2007) Skin inflammation in RelB(-/-) mice leads to defective immunity and impaired clearance of vaccinia virus. J Allergy Clin Immunol 119:671–679

    Article  PubMed  CAS  Google Scholar 

  • Fulginiti VA (2003) Risks of smallpox vaccination. Jama 290: 1452 (author reply 1452)

  • Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA (2003) Smallpox vaccination: a review, part II. Adverse events. Clin Infect Dis 37:251–271

    Article  PubMed  Google Scholar 

  • Garaci E, Caroleo MC, Aloe L, Aquaro S, Piacentini M, Costa N, Amendola A, Micera A, Calio R, Perno CF, Levi-Montalcini R (1999) Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc Natl Acad Sci USA 96:14013–14018

    Article  PubMed  CAS  Google Scholar 

  • Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 179(247–66):517–563

    Google Scholar 

  • Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H, Assassi S, Paz G, Shete S, McNearney T, Draeger H, Reveille JD, Radstake TR, Simeon CP, Rodriguez L, Vicente E, Gonzalez-Gay MA, Mayes MD, Tan FK, Martin J, Arnett FC (2010) Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun 34:155–162

    Article  PubMed  CAS  Google Scholar 

  • Grigoryev DN, Howell MD, Watkins TN, Chen YC, Cheadle C, Boguniewicz M, Barnes KC, Leung DY (2010) Vaccinia virus-specific molecular signature in atopic dermatitis skin. J Allergy Clin Immunol 125:153–159 e28

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Haralambieva IH, Ovsyannikova IG, Dhiman N, Kennedy RB, O’Byrne M, Pankratz VS, Jacobson RM, Poland GA (2011) Common SNPs/Haplotypes in IL18R1 and IL18 genes are associated with variations in humoral immunity to smallpox vaccination in caucasians and African Americans. J Infect Dis 204:433–441

    Article  PubMed  CAS  Google Scholar 

  • Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Gaffney PM, Edberg JC, Rioux JD, Ojwang JO, James JA, Merrill JT, Gilkeson GS, Seldin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210

    Article  PubMed  CAS  Google Scholar 

  • Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY (2006) Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 24:341–348

    Article  PubMed  CAS  Google Scholar 

  • Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto I, Tsutsumi A, Hom G, Graham RR, Takasaki Y, Hashimoto H, Ohashi J, Behrens TW, Sumida T, Tsuchiya N (2009) Replication of the association between the C8orf13-BLK region and systemic lupus erythematosus in a Japanese population. Arthritis Rheum 60:553–558

    Article  PubMed  CAS  Google Scholar 

  • Jenner E (1798) An inquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox. Law, London

  • Kennedy R, Pankratz VS, Swanson E, Watson D, Golding H, Poland GA (2009a) Statistical approach to estimate vaccinia- specific neutralizing antibody titers using a high throughput assay. Clin Vaccine Immunol 16(8):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA (2009b) The immunology of smallpox vaccines. Curr Opin Immunol 21(3):314–320

    Article  PubMed  CAS  Google Scholar 

  • Keski-Oja J, Koli K, von Melchner H (2004) TGF-beta activation by traction? Trends Cell Biol 14:657–659

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Kohyama S, Ohno S, Isoda A, Moriya O, Belladonna ML, Hayashi H, Iwakura Y, Yoshimoto T, Akatsuka T, Matsui M (2007) IL-23 enhances host defense against vaccinia virus infection via a mechanism partly involving IL-17. J Immunol 179:3917–3925

    PubMed  CAS  Google Scholar 

  • Lambiase A, Bracci-Laudiero L, Bonini S, Bonini S, Starace G, D’Elios MM, De Carli M, Aloe L (1997) Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol 100:408–414

    Article  PubMed  CAS  Google Scholar 

  • Lotz M, Setareh M, von Kempis J, Schwarz H (1996) The nerve growth factor/tumor necrosis factor receptor family. J Leukoc Biol 60:1–7

    PubMed  CAS  Google Scholar 

  • Lowell CA (2004) Src-family kinases: rheostats of immune cell signaling. Mol Immunol 41:631–643

    Article  PubMed  CAS  Google Scholar 

  • Myskiw C, Arsenio J, van Bruggen R, Deschambault Y, Cao J (2009) Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. J Virol 83:6757–6768

    Article  PubMed  CAS  Google Scholar 

  • Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S, Matsuda Y, Fujii H, Saijoh Y, Hamada H (1999) GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron 23:725–736

    Article  PubMed  CAS  Google Scholar 

  • Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P, Vasaitis L, Kvarnstrom M, Delaleu N, Lundmark P, Lundmark A, Sjowall C, Brun JG, Jonsson MV, Harboe E, Goransson LG, Johnsen SJ, Soderkvist P, Eloranta ML, Alm G, Baecklund E, Wahren-Herlenius M, Omdal R, Ronnblom L, Jonsson R, Syvanen AC (2011) Association of EBF1, FAM167A (C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun 12:100–109

    Article  PubMed  CAS  Google Scholar 

  • Okutani D, Lodyga M, Han B, Liu M (2006) Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol 291:L129–L141

    Article  PubMed  CAS  Google Scholar 

  • Otten U, Ehrhard P, Peck R (1989) Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Natl Acad Sci USA 86:10059–10063

    Article  PubMed  CAS  Google Scholar 

  • Ovsyannikova IG, Jacobson RM, Ryan JE, Vierkant RA, Pankratz VS, Jacobsen SJ, Poland GA (2005) HLA class II alleles and measles virus-specific cytokine immune response following two doses of measles vaccine. Immunogenetics 56:798–807

    Article  PubMed  CAS  Google Scholar 

  • Panther E, Corinti S, Idzko M, Herouy Y, Napp M, la Sala A, Girolomoni G, Norgauer J (2003) Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 101:3985–3990

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reading PC, Smith GL (2003) Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77:9960–9968

    Article  PubMed  CAS  Google Scholar 

  • Reading PC, Khanna A, Smith GL (2002) Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 292:285–298

    Article  PubMed  CAS  Google Scholar 

  • Ryan JE, Dhiman N, Ovsyannikova IG, Vierkant RA, Pankratz VS, Poland GA (2009) Response surface methodology to determine optimal cytokine responses in human peripheral blood mononuclear cells after smallpox vaccination. J Immunol Methods 341:97–105

    Article  PubMed  CAS  Google Scholar 

  • Schaid DJ, Batzler AJ, Jenkins GD, Hildebrandt MA (2006) Exact tests of Hardy–Weinberg equilibrium and homogeneity of disequilibrium across strata. Am J Hum Genet 79:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Scott JE, ElKhal A, Freyschmidt EJ, MacArthur DH, McDonald D, Howell MD, Leung DY, Laouar A, Manjunath N, Bianchi T, Boes M, Oettgen HC, Geha RS (2007) Impaired immune response to vaccinia virus inoculated at the site of cutaneous allergic inflammation. J Allergy Clin Immunol 120:1382–1388

    Article  PubMed  CAS  Google Scholar 

  • Sharma DP, Ramsay AJ, Maguire DJ, Rolph MS, Ramshaw IA (1996) Interleukin-4 mediates down regulation of antiviral cytokine expression and cytotoxic T-lymphocyte responses and exacerbates vaccinia virus infection in vivo. J Virol 70:7103–7107

    PubMed  CAS  Google Scholar 

  • Smith VP, Bryant NA, Alcami A (2000) Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230

    PubMed  CAS  Google Scholar 

  • Smith EJ, Marie I, Prakash A, Garcia-Sastre A, Levy DE (2001) IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or Ikappa B kinase but is blocked by Vaccinia virus E3L protein. J Biol Chem 276:8951–8957

    Article  PubMed  CAS  Google Scholar 

  • Souza RP, Romano-Silva MA, Lieberman JA, Meltzer HY, MacNeil LT, Culotti JG, Kennedy JL, Wong AH (2010) Genetic association of the GDNF alpha-receptor genes with schizophrenia and clozapine response. J Psychiatr Res 44:700–706

    Article  PubMed  Google Scholar 

  • Suzuki N, Suzuki S, Millar DG, Unno M, Hara H, Calzascia T, Yamasaki S, Yokosuka T, Chen NJ, Elford AR, Suzuki J, Takeuchi A, Mirtsos C, Bouchard D, Ohashi PS, Yeh WC, Saito T (2006) A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311:1927–1932

    Article  PubMed  CAS  Google Scholar 

  • Symons JA, Alcami A, Smith GL (1995) Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560

    Article  PubMed  CAS  Google Scholar 

  • Symons JA, Adams E, Tscharke DC, Reading PC, Waldmann H, Smith GL (2002) The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844

    PubMed  CAS  Google Scholar 

  • Team RDC (2008) R: a language and environment for statistical computing

  • Tian T, Liu L, Freyschmidt EJ, Murphy GF, Kupper TS, Fuhlbrigge RC (2009) Overexpression of IL-1alpha in skin differentially modulates the immune response to scarification with vaccinia virus. J Invest Dermatol 129:70–78

    Article  PubMed  CAS  Google Scholar 

  • Torcia M, Bracci-Laudiero L, Lucibello M, Nencioni L, Labardi D, Rubartelli A, Cozzolino F, Aloe L, Garaci E (1996) Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85:345–356

    Article  PubMed  CAS  Google Scholar 

  • Umlauf BJ, Ovsyannikova IG, Haralambieva IH, Kennedy RB, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA (2011) Correlations between vaccinia-specific immune responses within a cohort of armed forces members. Viral Immunol 24:415–420

    Article  PubMed  CAS  Google Scholar 

  • van Den Broek M, Bachmann MF, Kohler G, Barner M, Escher R, Zinkernagel R, Kopf M (2000) IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2. J Immunol 164:371–378

    Google Scholar 

  • Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S, Al-Hajjar S, Al-Ghonaium A, Marodi L, Davidson D, Speert D, Roifman C, Garty BZ, Ozinsky A, Barrat FJ, Coffman RL, Miller RL, Li X, Lebon P, Rodriguez-Gallego C, Chapel H, Geissmann F, Jouanguy E, Casanova JL (2005) Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23:465–478

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Ng P, Zhao M, Hirankarn N, Lau CS, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Avihingsanon Y, Lee TL, Ho MH, Lee PP, Wong WH, Lau YL (2009) Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 10:219–226

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Borghi MO, Delgado-Vega AM, Tincani A, Meroni PL, Alarcon-Riquelme ME (2009) Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndrome. Arthritis Rheum 60:2468–2471

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We extend our thanks to Drs. Meg Ryan and Kevin L. Russell, the Naval Health Research Center team, and the Mayo Vaccine Research Group nurses and study coordinators for their efforts in subject recruitment. We thank Julie M. Cunningham and the Mayo Advanced Genomic Technology Center for genotyping efforts, as well as Megan O’Byrne and David Watson for assistance with the statistical analysis. Funding support was provided by the National Institute of Allergies and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Contract No. HHSN266200400065C. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Conflict of interest

The authors do not have any conflicts of interest to report.

Ethical standard

All experiments described here comply with the current, applicable US laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Poland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, R.B., Ovsyannikova, I.G., Shane Pankratz, V. et al. Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Hum Genet 131, 1403–1421 (2012). https://doi.org/10.1007/s00439-012-1174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1174-2

Keywords

Navigation