Skip to main content

Advertisement

Log in

Polymorphisms in the XPG gene and risk of gastric cancer in Chinese populations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

DNA repair genes play an important role in maintaining stability and integrity of genomic DNA. Polymorphisms in nucleotide excision repair genes may cause variations in DNA repair capacity phenotype and thus contribute to cancer risk. In this case–control study of 1,125 gastric cancer cases and 1,196 cancer-free controls, we investigated the association between three functional single nucleotide polymorphisms (SNPs, rs2296147T > C, rs2094258C > T and rs873601G > A) in the xeroderma pigmentosum group G (XPG) gene and gastric cancer risk. We used the Taqman assays to genotype these three SNPs and logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). We found that only the rs873601A variant genotypes were associated with a significant higher risk for gastric adenocarcinoma (adjusted OR = 1.30, 95% CI = 1.03–1.64 for AA vs. GG and adjusted OR = 1.23, 95% CI = 1.01–1.49 for AA vs. GG/AG). Stratification analysis indicated that this risk was more pronounced in subgroups of older age (>59 years), males, ever-smokers, and patients with NGCA. All these were not found for the other two SNPs (rs2296147T > C and rs2094258C > T). We then performed expression analysis using gastric cancer adjacent normal tissues from 141 patients and found that the A variant allele was associated with non-significantly reduced expression of XPG mRNA (P trend = 0.107). Further analysis using mRNA expression data from the HapMap suggested that the A allele was associated with significantly reduced expression of XPG mRNA in normal cell lines for 45 Chinese (P trend = 0.003) as well as for 261 subjects with different ethnicities (P trend = 0.001). These support the hypothesis that functional XPG variants may contribute to the risk of gastric cancer. Larger studies with different ethnic populations are warranted to validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NER:

Nucleotide excision repair

SNP:

Single nucleotide polymorphism

XPG :

Xeroderma pigmentosum group G

CI:

Confidence interval

OR:

Odds ratio

GCA:

Gastric cardia adenocarcinoma

NGCA:

Non-gastric cardia adenocarcinoma

UTR:

Untranslated region

CHB:

Han Chinese in Beijing, China

References

  • Abnet CC, Freedman ND, Hu N, Wang Z, Yu K, Shu XO, Yuan JM, Zheng W, Dawsey SM, Dong LM, Lee MP, Ding T, Qiao YL, Gao YT, Koh WP, Xiang YB, Tang ZZ, Fan JH, Wang C, Wheeler W, Gail MH, Yeager M, Yuenger J, Hutchinson A, Jacobs KB, Giffen CA, Burdett L, Fraumeni JF Jr, Tucker MA, Chow WH, Goldstein AM, Chanock SJ, Taylor PR (2010) A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet 42:764–767

    Article  PubMed  CAS  Google Scholar 

  • An J, Liu Z, Hu Z, Li G, Wang LE, Sturgis EM, El-Naggar AK, Spitz MR, Wei Q (2007) Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 16:1633–1638

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Wrensch MR, Hansen HM, Sison JD, Aldrich MC, Quesenberry CP Jr, Seldin MF, Kelsey KT, Kittles RA, Silva G, Wiencke JK (2008) Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer 123:2095–2104

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Xie F, Chen K, Wang D, Jiang H, Li J, Pan F, Chen S, Zhang Y, Ruan Z, Huang H, Zou L, Liang H (2009) ERCC5 promoter polymorphisms at −763 and +25 predict the response to oxaliplatin-based chemotherapy in patients with advanced colorectal cancer. Cancer Biol Ther 8:1424–1430

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Eicher SA, Guo Z, Hong WK, Spitz MR, Wei Q (1998) Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev 7:465–468

    PubMed  CAS  Google Scholar 

  • Chow WH, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC, Ahsan H, West AB, Rotterdam H, Niwa S, Fraumeni JF Jr (1998) Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 90:150–155

    Article  PubMed  CAS  Google Scholar 

  • Clarkson SG (2003) The XPG story. Biochimie 85:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE (2000) Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J Dermatol Sci 23:1–11

    Article  PubMed  CAS  Google Scholar 

  • Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG (1999) Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274:5637–5648

    Article  PubMed  CAS  Google Scholar 

  • Cordonnier AM, Fuchs RP (1999) Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutat Res 435:111–119

    PubMed  CAS  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785

    Article  PubMed  Google Scholar 

  • Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Article  PubMed  Google Scholar 

  • Hanawalt PC (2001) Controlling the efficiency of excision repair. Mutat Res 485:3–13

    PubMed  CAS  Google Scholar 

  • Holm K, Melum E, Franke A, Karlsen TH (2010) SNPexp—A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels. BMC Bioinformatics 11:600

    Article  PubMed  Google Scholar 

  • Hu Z, Ajani JA, Wei Q (2007) Molecular epidemiology of gastric cancer: current status and future prospects. Gastrointest Cancer Res 1:12–19

    PubMed  Google Scholar 

  • Hussain SK, Mu LN, Cai L, Chang SC, Park SL, Oh SS, Wang Y, Goldstein BY, Ding BG, Jiang Q, Rao J, You NC, Yu SZ, Papp JC, Zhao JK, Wang H, Zhang ZF (2009) Genetic variation in immune regulation and DNA repair pathways and stomach cancer in China. Cancer Epidemiol Biomarkers Prev 18:2304–2309

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Jeon HS, Kim KM, Park SH, Lee SY, Choi JE, Lee GY, Kam S, Park RW, Kim IS, Kim CH, Jung TH, Park JY (2003) Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis 24:1677–1681

    Article  PubMed  CAS  Google Scholar 

  • Kamangar F, Chow WH, Abnet CC, Dawsey SM (2009) Environmental causes of esophageal cancer. Gastroenterol Clin North Am 38: 27–57, vii

    Google Scholar 

  • Le Page F, Kwoh EE, Avrutskaya A, Gentil A, Leadon SA, Sarasin A, Cooper PK (2000) Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101:159–171

    Article  PubMed  Google Scholar 

  • Matakidou A, Eisen T, Fleischmann C, Bridle H, Houlston RS (2006) Evaluation of xeroderma pigmentosum XPA, XPC, XPD, XPF, XPB, XPG and DDB2 genes in familial early-onset lung cancer predisposition. Int J Cancer 119:964–967

    Article  PubMed  CAS  Google Scholar 

  • Mudgett JS, MacInnes MA (1990) Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination. Genomics 8:623–633

    Article  PubMed  CAS  Google Scholar 

  • Narter KF, Ergen A, Agachan B, Gormus U, Timirci O, Isbir T (2009) Bladder cancer and polymorphisms of DNA repair genes (XRCC1, XRCC3, XPD, XPG, APE1, hOGG1). Anticancer Res 29:1389–1393

    PubMed  CAS  Google Scholar 

  • Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci U S A 94:3116–3121

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD (1994) XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371:432–435

    Article  PubMed  Google Scholar 

  • Pan J, Lin J, Izzo JG, Liu Y, Xing J, Huang M, Ajani JA, Wu X (2009) Genetic susceptibility to esophageal cancer: the role of the nucleotide excision repair pathway. Carcinogenesis 30:785–792

    Article  PubMed  CAS  Google Scholar 

  • Rouissi K, Bahria IB, Bougatef K, Marrakchi R, Stambouli N, Hamdi K, Cherif M, Ben Slama MR, Sfaxi M, Othman FB, Chebil M, Elgaaied AB, Ouerhani S (2011) The effect of tobacco, XPC, ERCC2 and ERCC5 genetic variants in bladder cancer development. BMC Cancer 11:101

    Article  PubMed  CAS  Google Scholar 

  • Ryk C, Kumar R, Sanyal S, de Verdier PJ, Hemminki K, Larsson P, Steineck G, Hou SM (2006) Influence of polymorphism in DNA repair and defence genes on p53 mutations in bladder tumours. Cancer Lett 241:142–149

    Article  PubMed  CAS  Google Scholar 

  • Samec S, Jones TA, Corlet J, Scherly D, Sheer D, Wood RD, Clarkson SG (1994) The human gene for xeroderma pigmentosum complementation group G (XPG) maps to 13q33 by fluorescence in situ hybridization. Genomics 21:283–285

    Article  PubMed  CAS  Google Scholar 

  • Scherly D, Nouspikel T, Corlet J, Ucla C, Bairoch A, Clarkson SG (1993) Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 363:182–185

    Article  PubMed  CAS  Google Scholar 

  • Shen M, Berndt SI, Rothman N, Demarini DM, Mumford JL, He X, Bonner MR, Tian L, Yeager M, Welch R, Chanock S, Zheng T, Caporaso N, Lan Q (2005) Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer 116:768–773

    Article  PubMed  CAS  Google Scholar 

  • Shiomi T, Harada Y, Saito T, Shiomi N, Okuno Y, Yamaizumi M (1994) An ERCC5 gene with homology to yeast RAD2 is involved in group G xeroderma pigmentosum. Mutat Res 314:167–175

    PubMed  CAS  Google Scholar 

  • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, Dermitzakis ET (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Li F, Sun N, Shukui Q, Baoan C, Jifeng F, Lu C, Zuhong L, Hongyan C, YuanDong C, Jiazhong J, Yingfeng Z (2009) Polymorphisms in XRCC1 and XPG and response to platinum-based chemotherapy in advanced non-small cell lung cancer patients. Lung Cancer 65:230–236

    Article  PubMed  Google Scholar 

  • Takahashi E, Shiomi N, Shiomi T (1992) Precise localization of the excision repair gene, ERCC5, to human chromosome 13q32.3-q33.1 by direct R-banding fluorescence in situ hybridization. Jpn J Cancer Res 83:1117–1119

    Article  PubMed  CAS  Google Scholar 

  • Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey SM, Dong ZW, Mark SD, Qiao YL, Taylor PR (2005) Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer 113:456–463

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi M, Reardon JT, Sancar A (1997) The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 272:16030–16034

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Lu M, Qian J, Yang Y, Li S, Lu D, Yu S, Meng W, Ye W, Jin L (2009) Rationales, design and recruitment of the Taizhou Longitudinal Study. BMC Public Health 9:223

    Article  PubMed  Google Scholar 

  • Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen SH (2007) Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res 35:4535–4541

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from “China’s Thousand Talents Program” Recruitment at Fudan University, the grant from the Ministry of Health (201002007) and the National Natural Science Foundation of China (81101808). We thank Zhuan-Xu Zhang and Huan Chen for his assistance in DNA extraction and Yu-Hu Xin for his technical support.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Yi Wei or Jin Li.

Additional information

J. He and L.-X. Qiu contributed equally to this work and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Qiu, LX., Wang, MY. et al. Polymorphisms in the XPG gene and risk of gastric cancer in Chinese populations. Hum Genet 131, 1235–1244 (2012). https://doi.org/10.1007/s00439-012-1152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1152-8

Keywords

Navigation