Skip to main content

Advertisement

Log in

Epigenetics DNA methylation in the core ataxin-2 gene promoter: novel physiological and pathological implications

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Pathogenic CAG (cytosine-adenine-guanine) expansions beyond certain thresholds in the ataxin-2 (ATXN2) gene cause spinocerebellar ataxia type 2 (SCA2) and were shown to contribute to Parkinson disease, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Regulation of ATXN2 gene expression and the function of the protein product are not known. SCA2 exhibits an inverse correlation between the size of the CAG repeat and the age at disease onset. However, a wide range of age at onset are typically observed, with CAG repeat number alone explaining only partly this variability. In this study, we explored the hypothesis that ATXN2 levels could be controlled by DNA methylation and that the derangement of this control may lead to escalation of disease severity and influencing the age at onset. We found that CpG methylation in human ATXN2 gene promoter is associated with pathogenic CAG expansions in SCA2 patients. Different levels of methylation in a SCA2 pedigree without an intergenerational CAG repeat instability caused the disease anticipation in a SCA2 family. DNA methylation also influenced the disease onset in SCA2 homozygotes and SCA3 patients. In conclusion, our study points to a novel regulatory mechanism of ATXN2 expression involving an epigenetic event resulting in differential disease course in SCA2 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar J, Santurlidis S, Nowok J et al (1999) Identification of the physiological promoter for spinocerebellar ataxia 2 gene reveals a CpG island for promoter activity situated into the exon 1 of this gene and provides data about the origin of the nonmethylated state of these types of islands. Biochem Biophys Res Commun 254(2):315–318

    Article  PubMed  CAS  Google Scholar 

  • Almaguer-Mederos LE, Falcon NS, Almira YR et al (2010) Estimation of the age at onset in spinocerebellar ataxia type 2 Cuban patients by survival analysis. Clin Genet 78:169–174

    Article  PubMed  CAS  Google Scholar 

  • Al-Ramahi I, Perez AM, Lim J, Zhang M, Sorensen R et al (2007) dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet 3(12):e234. doi:10.1371/journal.pgen.0030234

    Article  PubMed  Google Scholar 

  • Bauer PO, Zumrova A, Matoska V, Mitsui K, Goetz P (2004) Can ataxin-2 be down-regulated by allele-specific de novo DNA methylation in SCA2 patients? Med Hypotheses 63(6):1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Bhasin M, Zhang H, Reinherz E, Reche P (2005) Prediction of methylated CpGs in DNA sequences using a support vector machina. FEBS Lett 579(20):4302–4308

    Article  PubMed  CAS  Google Scholar 

  • Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Charles P, Camuzat A, Benammar N, Sellal F, Destée A, Bonnet AM, Lesage S, Le Ber I, Stevanin G, Dürr A, Brice A (2007) French Parkinson’s Disease Genetic Study Group. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69:1970–1975

    Article  PubMed  CAS  Google Scholar 

  • Choudhry S, Mukerji M, Srivastava AK et al (2001) CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet 10(21):2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Dick KJ, Nelson CP, Braund PS et al (2011) Genome wide methylation analysis in coronary artery disease. Heart 97:A42

    Article  Google Scholar 

  • Durr A, Stevanin G, Cancel G et al (1996) Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol Apr 39(4):490–499

    Article  CAS  Google Scholar 

  • Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    Article  PubMed  CAS  Google Scholar 

  • Elden AC, Kim HJ, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nat Genet 466:1069–1075

    Article  CAS  Google Scholar 

  • Emmel VE, Alonso I, Jardim LB et al (2011) Does DNA methylation in the promoter region of the ATXN3 gene modify age at onset in MJD (SCA3) patients? Clin Genet 79:100–102

    Article  PubMed  CAS  Google Scholar 

  • Figueroa KP, Pulst SM (2003) Identification and expression of the gene for human ataxin-2 related protein on chromosome 16. Exp Neurol 184:669–678

    Article  PubMed  CAS  Google Scholar 

  • Filippova GN, Thienes CP, Penn BH et al (2001) CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet 28:335–343

    Article  PubMed  CAS  Google Scholar 

  • Gimelbrant A, Hutchinson JN, Thompson BR (2007) Widespread monoallelic expression on human autosomes. Science 318:1136–1140

    Article  PubMed  CAS  Google Scholar 

  • Goyal N, Sur S, Sinha VK (2010) Childhood mood disorder in spinocerebellar ataxia type 2: a case report. J Neuropsychiatry Clin Neurosci 22:21–22

    Google Scholar 

  • Hallen L, Klein H, Stoschek C (2011) The KRAB-containing zinc-finger transcriptional regulator ZBRK1 activates SCA2 gene transcription through direct interaction with its gene product, ataxin-2. Hum Mol Genet 20(1):104–114

    Article  PubMed  CAS  Google Scholar 

  • Herman J, Graff JR, Myohanen S, Nelkin BD, Baylin BS (1996) Methylation-specific PCR: a novel assay for methylation status of CpG islands. Proc Natl Acad Sci 93:9821–9826

    Article  PubMed  CAS  Google Scholar 

  • Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. Chembiochem 12(2):206–222

    Article  PubMed  CAS  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  PubMed  CAS  Google Scholar 

  • Laffita-Mesa JM, Velázquez-Pérez LC, Santos Falcón N et al (2011) Unexpanded and intermediate CAG polymorphisms at SCA2 locus (ATXN2) in the Cuban population: evidences about the origin of expanded SCA2 alleles. Eur J Hum Gen. doi:10.1038/ejhg.2011.154

  • Lande-Diner L, Zhang J, Ben-Porath I, Amariglio N, Keshet I, Hecht M, Azuara V, Fisher AG, Rechavi G, Cedar H (2007) Role of DNA methylation in stable gene repression. J Biol Chem 20;282(16):12194–12200

    Google Scholar 

  • Lastres-Becker I et al (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Li YR, Ingre C et al (2011) Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 20:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Lessing D, Bonini NM (2008) Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila. PLoS Biol 6:e29

    Article  PubMed  Google Scholar 

  • Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Google Scholar 

  • Libby RT, Hagerman KA, Pineda VV et al (2008) CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet 4:e1000257

    Article  PubMed  Google Scholar 

  • Lim J, Hao T, Shaw C et al (2006) A Protein–protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell 125:801–814

    Article  PubMed  CAS  Google Scholar 

  • Lorenzetti D, Bohlega S, Zoghbi HY (1997) The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia. Neurology 49(4):1009–1013

    PubMed  CAS  Google Scholar 

  • Miranda TB, Jones PA (2007) DNA methylation: the nuts, bolts of repression. J Cell Physiol 213(2):384–390

    Article  PubMed  CAS  Google Scholar 

  • Mulvihill DJ, Edamura NK, Hagerman KA et al (2005) Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon trinucleotide repeats on spinocerebellar ataxia, type 1 and fragile X syndrome. J Biol Chem 280:4498–4503

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  • Nonhoff U, Ralser M, Welzel F et al (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 18(4):1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Payami H, Nutt J, Gancher S et al (2003) SCA2 may present as levodopa-responsive parkinsonism. Mov Disord 18:425–429

    Article  PubMed  Google Scholar 

  • Pulst SM, Nechiporuk A, Nechiporuk T et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • Ragothaman M, Muthane U (2008) Homozygous SCA2 mutations changes phenotype and hastens progression. Mov Disord 23(5):770–701

    Google Scholar 

  • Rottnek M, Riggio S, Byne W et al (2008) Schizophrenia in a patient with Spinocerebellar Ataxia 2: coincidence of two disorders or a neurodegenerative disease presenting with psychosis? Am J Psychiatry 165(8):964–967

    Article  PubMed  Google Scholar 

  • Sahba S, Nechiporuk A, Figueroa KP, Nechiporuk T, Pulst SM (1998) Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics 47:359–364

    Article  PubMed  CAS  Google Scholar 

  • Socal MP, Emmel VE, Rieder CR et al (2008) Intrafamilial variability of Parkinson phenotype in SCAs: novel cases due to SCA2 and SCA3 expansions. Parkinsonism Relat Disord 15(5):374–378

    Article  PubMed  Google Scholar 

  • Sopher BL, Ladd PD, Pineda VV et al (2011) CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. Neuron 70:1071–1084

    Article  PubMed  CAS  Google Scholar 

  • Spadafora P, Annesi G, Liguori M, Tarantino P, Cutuli N, Carrideo S et al (2007) Gene dosage influences the age at onset of SCA2 in a family from southern Italy. Clin Genet 72:381–383

    Article  PubMed  CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–934

    Article  PubMed  CAS  Google Scholar 

  • Trinh BN, Long TI, Laird PW (2001) DNA methylation analysis by MethyLight technology. Methods 25:456–462

    Article  PubMed  CAS  Google Scholar 

  • Velázquez-Pérez LP, Sánchez GC, Santos NF et al (2009) Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett 454(2):157–160

    Article  PubMed  Google Scholar 

  • Wiedemeyer R, Westermann F, Wittke I et al (2003) Ataxin-2 promotes apoptosis of human neuroblastoma cell. Oncogene 22:401–411

    Article  PubMed  CAS  Google Scholar 

  • Xu YH, Manoharan HT, Pitot HC (2005) CpG Analyzer, a Windows-based utility program for investigation of DNA methylation. BioTechniques 39:656–662

    Article  PubMed  CAS  Google Scholar 

  • Zu T, Gibbens B, Doty NS et al. (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108:260–265

    Google Scholar 

Download references

Acknowledgments

We are indebted to our Cuban patients. We would like to thank Dr. Guadalupe Guzman for providing real-time PCR and other facilities at IPK. Support of Dr Ocilia Rodriguez is acknowledged. We also thank all members belonging to the Dr. Vivian Kourí laboratory for their help and expertise in real-time PCR. Acknowledgement also belongs to our colleagues from Neurobiology Department and Dr Velázquez-Pérez for his support. This work was supported in part by Third World Academy of Sciences (TWAS) in the framework of the Research Grant Project 06-329 RG/BIO/LA UNESCO FR: 3240157855, a BIOLABS Research Award and a grant of the Cuban Ministry of Health and the Science and Technology Ministry all to JMLM.

Conflict of interest

Authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Laffita-Mesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 108 kb)

Supplementary Table (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laffita-Mesa, J.M., Bauer, P.O., Kourí, V. et al. Epigenetics DNA methylation in the core ataxin-2 gene promoter: novel physiological and pathological implications. Hum Genet 131, 625–638 (2012). https://doi.org/10.1007/s00439-011-1101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1101-y

Keywords

Navigation