Skip to main content
Log in

A scaffold for X chromosome inactivation

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

X chromosome inactivation (XCI), the silencing of one of the two X chromosomes in XX female cells, equalises the dosage of X-linked genes relative to XY males. The process is mediated by the non-coding RNA X inactive specific transcript (Xist) that binds in cis and propagates along the inactive X chromosome elect, triggering chromosome-wide silencing. The mechanisms by which Xist RNA binds and spreads along the chromosome, and initiates Xist-mediated chromosome silencing remain poorly understood. Accumulating evidence suggests that chromosome and nuclear organisation are important in both processes. Notably, recent studies have identified specific factors, previously shown to be components of the nuclear matrix or scaffold, to play a role both in Xist RNA-binding and in Xist-mediated silencing. In this review we provide a perspective on these studies in the context of previous work on chromosome/nuclear architecture in XCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, Kishimoto H, Gresh L, Kohwi-Shigematsu T, Kenner L, Wutz A (2009) SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell 16(4):507–516

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T (2000) The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14(5):521–535

    PubMed  CAS  Google Scholar 

  • Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97(12):6634–6639. doi:97/12/6634

    Article  PubMed  CAS  Google Scholar 

  • Beletskii A, Hong YK, Pehrson J, Egholm M, Strauss WM (2001) PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc Natl Acad Sci U S A 98(16):9215–9220. doi:10.1073/pnas.161173098

    Article  PubMed  CAS  Google Scholar 

  • Belyaev N, Keohane AM, Turner BM (1996) Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum Genet 97(5):573–578

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Coffey DS (1974) Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60(4):1410–1417

    Article  PubMed  CAS  Google Scholar 

  • Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science (New York) 255(5041):195–197

  • Brockdorff N (2002) X-chromosome inactivation: closing in on proteins that bind Xist RNA. Trends Genet 18(7):352–358. doi:S0168952502027178

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71(3):527–542

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Han HJ, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34(1):42–51

    Article  PubMed  CAS  Google Scholar 

  • Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32(4):623–626. doi:10.1038/ng1051

    Article  PubMed  CAS  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20(16):2223–2237

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Hall LL, Baldry SE, Thorogood NP, Lawrence JB, Brown CJ (2007) Inducible XIST-dependent X-chromosome inactivation in human somatic cells is reversible. Proc Natl Acad Sci USA 104(24):10104–10109. doi:0610946104

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141(6):956–969

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132(3):259–275

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, Chow JC, Brown CJ, Lawrence JB (1998) Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation. J Cell Biol 142(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA 103(20):7688–7693

    Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393(6685):599–601

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18(3):307–316

    Article  PubMed  CAS  Google Scholar 

  • de Belle I, Cai S, Kohwi-Shigematsu T (1998) The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol 141(2):335–348

    Article  PubMed  Google Scholar 

  • Dreyfuss G, Choi YD, Adam SA (1984) Characterization of heterogeneous nuclear RNA–protein complexes in vivo with monoclonal antibodies. Mol Cell Biol 4(6):1104–1114

    PubMed  CAS  Google Scholar 

  • Dreyfuss G, Choi YD, Adam SA (1989) The ribonucleoprotein structures along the pathway of mRNA formation. Endocr Res 15(4):441–474

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    Article  PubMed  CAS  Google Scholar 

  • Duthie SM, Nesterova TB, Formstone EJ, Keohane AM, Turner BM, Zakian SM, Brockdorff N (1999) Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum Mol Genet 8(2):195–204

    Article  PubMed  CAS  Google Scholar 

  • Eils R, Dietzel S, Bertin E, Schrock E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135(6 Pt 1):1427–1440

    Article  PubMed  CAS  Google Scholar 

  • Fackelmayer FO (2005) A stable proteinaceous structure in the territory of inactive X chromosomes. J Biol Chem 280(3):1720–1723

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Chen T, Chadwick B, Li E, Zhang Y (2004) Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 279(51):52812–52815

    Article  PubMed  CAS  Google Scholar 

  • Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T (2001) SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 21(16):5591–5604

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17:155–190. doi:10.1146/annurev.ge.17.120183.001103

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1986) The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO J 5(3):511–518

    PubMed  CAS  Google Scholar 

  • Glazko GV, Koonin EV, Rogozin IB, Shabalina SA (2003) A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet TIG 19(3):119–124

    Article  CAS  Google Scholar 

  • Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124(5):901–914

    Article  PubMed  Google Scholar 

  • Han SP, Tang YH, Smith R (2010) Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430(3):379–392

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19(3):469–476

    Article  PubMed  CAS  Google Scholar 

  • Helbig R, Fackelmayer FO (2003) Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 112(4):173–182

    Article  PubMed  CAS  Google Scholar 

  • Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11(7):2655–2664

    PubMed  CAS  Google Scholar 

  • Kukalev AS, Lobov IB, Percipalle P, Podgornaya OI (2009) SAF-A/hnRNP-U localization in interphase and metaphase. Cytogenet Genome Res 124(3–4):288–297

    Article  PubMed  CAS  Google Scholar 

  • Lobov IB, Tsutsui K, Mitchell AR, Podgornaya OI (2000) Specific interaction of mouse major satellite with MAR-binding protein SAF-A. Eur J Cell Biol 79(11):839–849

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80(1–4):133–137

    Article  PubMed  CAS  Google Scholar 

  • Naughton C, Sproul D, Hamilton C, Gilbert N (2010) Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures. Mol Cell 40(3):397–409

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Avner P (2010) An embryonic story: analysis of the gene regulative network controlling Xist expression in mouse embryonic stem cells. Bioessays 32(7):581–588. doi:10.1002/bies.201000019

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11(3):799–805

    PubMed  CAS  Google Scholar 

  • Popova BC, Tada T, Takagi N, Brockdorff N, Nesterova TB (2006) Attenuated spread of X-inactivation in an X; autosome translocation. Proc Natl Acad Sci USA 103(20):7706–7711. doi:0602021103

    Article  PubMed  CAS  Google Scholar 

  • Pullirsch D, Härtel R, Kishimoto H, Leeb M, Steiner G, Wutz A (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development (Cambridge, England) 137(6):935–943

    CAS  Google Scholar 

  • Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS (2008) The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 121(Pt 7):1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Romig H, Fackelmayer FO, Renz A, Ramsperger U, Richter A (1992) Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J 11(9):3431–3440

    PubMed  CAS  Google Scholar 

  • Sarma K, Levasseur P, Aristarkhov A, Lee JT (2010) Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci USA 107(51):22196–22201. doi:1009785107

    Article  PubMed  CAS  Google Scholar 

  • Savarese F, Flahndorfer K, Jaenisch R, Busslinger M, Wutz A (2006) Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 26(19):7167–7177. doi:26/19/7167

    Article  PubMed  CAS  Google Scholar 

  • Senner CE, Nesterova TB, Norton S, Dewchand H, Godwin J, Mak W, Brockdorff N (2011) Disruption of a conserved region of Xist exon 1 impairs Xist RNA localisation and X-linked gene silencing during random and imprinted X chromosome inactivation. Development 138(8):1541–1550. doi:dev.056812

    Article  PubMed  CAS  Google Scholar 

  • Smith KP, Byron M, Clemson CM, Lawrence JB (2004) Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 113(6):324–335. doi:10.1007/s00412-004-0325-1

    Article  PubMed  CAS  Google Scholar 

  • Tang YA, Huntley D, Montana G, Cerase A, Nesterova TB, Brockdorff N (2010) Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation. Epigenet Chromatin 3(1):10. doi:1756-8935-3-10

    Article  Google Scholar 

  • Wang TY, Han ZM, Chai YR, Zhang JH (2010) A mini review of MAR-binding proteins. Mol Biol Rep 37(7):3553–3560

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5(4):695–705

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30(2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Akiba T, Yamasaki T, Harata K (2007) Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Res 35(15):5073–5084

    Article  PubMed  CAS  Google Scholar 

  • Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419(6907):641–645

    Article  PubMed  CAS  Google Scholar 

  • Zbarskii IB, Debov SS (1951) Protein fractions in the cell nuclei. Biokhimiia (Moscow, Russia) 16(5):390–395

    CAS  Google Scholar 

Download references

Acknowledgments

AT was supported by the Stiftung der Deutschen Wirtschaft (SDW) and the Medical Research Council (MRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Brockdorff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tattermusch, A., Brockdorff, N. A scaffold for X chromosome inactivation. Hum Genet 130, 247–253 (2011). https://doi.org/10.1007/s00439-011-1027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1027-4

Keywords

Navigation