Skip to main content

Advertisement

Log in

Transcriptomic analysis of cell-free fetal RNA suggests a specific molecular phenotype in trisomy 18

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Trisomy 18 is a common human aneuploidy that is associated with significant perinatal mortality. Unlike the well-characterized “critical region” in trisomy 21 (21q22), there is no corresponding region on chromosome 18 associated with its pathogenesis. The high morbidity and mortality of affected individuals has limited extensive investigations. In order to better understand the molecular mechanisms underlying the congenital anomalies observed in this condition, we investigated the in utero gene expression profile of second trimester fetuses affected with trisomy 18. Total RNA was extracted from cell-free amniotic fluid supernatant from aneuploid fetuses and euploid controls matched for gestational age and hybridized to Affymetrix U133 Plus 2.0 arrays. Individual differentially expressed transcripts were obtained by two-tailed t tests. Over-represented functional pathways among these genes were identified with DAVID and Ingenuity® Pathways Analysis. Results show that three hundred and fifty-two probe sets representing 251 annotated genes were statistically significantly differentially expressed between trisomy 18 and controls. Only 7 genes (2.8% of the annotated total) were located on chromosome 18, including ROCK1, an up-regulated gene involved in valvuloseptal and endocardial cushion formation. Pathway analysis indicated disrupted function in ion transport, MHCII/T cell mediated immunity, DNA repair, G-protein mediated signaling, kinases, and glycosylation. Significant down-regulation of genes involved in adrenal development was identified, which may explain both the abnormal maternal serum estriols and the pre and postnatal growth restriction in trisomy 18. Comparison of this gene set to one previously generated for trisomy 21 fetuses revealed only six overlapping differentially regulated genes. This study contributes novel information regarding functional developmental gene expression differences in fetuses with trisomy 18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altug-Teber Ö, Walter M, Mau-Holzmann UA, Dufke A, Stappert H, Tekesin I, Heilbronner H, Nieselt K, Riess O (2007) Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet Genome Res 119:171–184

    Article  CAS  PubMed  Google Scholar 

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM, InterPro Consortium (2000) InterPro: an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16:1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Barker WC, Garavelli JS, Huang H, McGarvey PB, Orcutt BC, Srinivasarao GY, Xiao C, Yeh LS, Ledley RS, Janda JF, Pfeiffer F, Mewes HW, Tsugita A, Wu C (2000) The protein information resource (PIR). Nucleic Acids Res 28:41–44

    Article  CAS  PubMed  Google Scholar 

  • Baty BJ, Blackburn BL, Carey JC (1994a) Natural history of trisomy 18 and trisomy 13: I. Growth, physical assessment, medical histories, survival, and recurrence risk. Am J Med Genet 49:175–188

    Article  CAS  PubMed  Google Scholar 

  • Baty BJ, Jorde LB, Blackburn BL, Carey JC (1994b) Natural history of trisomy 18 and trisomy 13: II. Psychomotor development. Am J Med Genet 49:189–194

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bettio D, Levi Setti P, Bianchi P, Grazioli V (2003) Trisomy 18 mosaicism in a woman with normal intelligence. Am J Med Genet A 120A:303–304

    Article  CAS  PubMed  Google Scholar 

  • Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4A:P3

    Article  Google Scholar 

  • Edwards JH, Harnden DG, Cameron AH, Crosse VM, Wolf OH (1960) A new trisomic syndrome. Lancet 275:787–789

    Article  Google Scholar 

  • Embleton ND, Wyllie JP, Wright MJ, Burn J, Hunter S (1996) Natural history of trisomy 18. Arch Dis Child 75:F38–F41

    CAS  Google Scholar 

  • Gentleman R, Carey V, Huber W, Irizarry RA, Duduoit S (2005) Bioinformatics and computational biology solutions Using R and bioconductor. Springer Press, New York

    Book  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  PubMed  Google Scholar 

  • Hui L, Bianchi DW (2010) Cell-free fetal nucleic acids in amniotic fluid. Hum Reprod Update (Oct 5 epub ahead of print)

  • Ichizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893

    Google Scholar 

  • Irons M, Elias ER, Salen G, Tint GS, Batta AK (1993) Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet 341:1414

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  Google Scholar 

  • Kempná P, Flück CE (2008) Adrenal gland development and defects. Best Pract Res Clin Endocrinol Metab 22:77–93

    Article  PubMed  Google Scholar 

  • Kohn G, Shohat M (1987) Trisomy 18 mosaicism in an adult with normal intelligence. Am J Med Genet 26:929–931

    Article  CAS  PubMed  Google Scholar 

  • Korenberg JR, Kawashima H, Pulst SM, Ikeuchi T, Ogasawara N, Yamamoto K, Schonberg SA, West R, Allen L, Magenis E, Ikawa K, Taniguchi N, Epstein CJ (1990) Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Hum Genet 47:236–246

    CAS  PubMed  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C4

    CAS  PubMed  Google Scholar 

  • Lam WW, Kirk J, Manning N, Reardon W, Kelley RI, Fitzpatrick D (2006) Decreased cholesterol synthesis as a possible aetiological factor in malformations of trisomy 18. Eur J Med Genet 49:195–199

    Article  PubMed  Google Scholar 

  • Langlois D, Li JY, Saez JM (2002) Development and function of the human fetal adrenal cortex. J Pediatr Endocrinol Metab 15(Suppl 5):1311–1322

    CAS  PubMed  Google Scholar 

  • Leung T, Manser E, Tan L, Lim L (1985) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    Google Scholar 

  • Makrydimas G, Plachouras N, Thilaganathan B, Nicolaides KH (1994) Abnormal immunological development in fetuses with trisomy 18. Prenat Diagn 14:239–241

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15:2208–2216

    CAS  PubMed  Google Scholar 

  • Matsuoka R, Matsuyama S, Yamamoto Y, Kuroki Y, Matsui I (1981) Trisomy 18q: a case report and review of karyotype–phenotype correlations. Hum Genet 57:78–82

    Article  CAS  PubMed  Google Scholar 

  • Mewar R, Kline AD, Harrison W, Rojas K, Greenberg F, Overhauser J (1993) Clinical and molecular evaluation of four patients with partial duplications of the long arm of chromosome 18. Am J Hum Genet 53:1269–1278

    CAS  PubMed  Google Scholar 

  • Mootha V, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately down-regulated in human diabetes. Nat Genet 34:267–273

    Article  CAS  PubMed  Google Scholar 

  • Morris JK, Savva GM (2008) The risk of fetal loss following a prenatal diagnosis of trisomy 13 or trisomy 18. Am J Med Genet A 46A:827–832

    Google Scholar 

  • Rasmussen SA, Wong LY, Yang Q, May KM, Friedman JM (2003) Population-based analyses of mortality in trisomy 13 and 18. Pediatrics 111:777–784

    Article  PubMed  Google Scholar 

  • Sakabe M, Ikeda K, Nakatani K, Kawada N, Imanaka-Yoshida K, Yoshida T, Yamagishi T, Nakajima Y (2006) Rho kinases regulate endothelial invasion and migration during valvuloseptal endocardial cushion tissue formation. Dev Dyn 235:94–104

    Article  CAS  PubMed  Google Scholar 

  • Sakabe M, Sakata H, Matsui H, Ikeda K, Yamagishi T, Nakajima Y (2008) ROCK1 expression is regulated by TGFbeta3 and ALK2 during valvuloseptal endocardial cushion formation. Anat Rec 291:845–857

    Article  CAS  Google Scholar 

  • Shapiro BL (1997) Whither Down syndrome critical regions? Hum Genet 99:421–423

    Article  CAS  PubMed  Google Scholar 

  • Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z, Bianchi DW (2009) Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc Natl Acad Sci USA 106:9425–9429

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Patau K, Therman E, Inhorn SL (1960) A new autosomal trisomy syndrome: multiple congenital anomalies caused by an extra chromosome. J Pediatr 57:338–345

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechanie A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  CAS  PubMed  Google Scholar 

  • Turcan S, Slonim D, Vetter D (2010) Lack of nAChr activity depresses cochlear maturation and up-regulates GABA system components: temporal profiling of gene expression in alpha9-null mice. PLoS One 5:e9058

    Article  PubMed  Google Scholar 

  • Turleau C, de Grouchy J (1977) Trisomy 18qter and trisomy mapping of chromosome 18. Clin Genet 12:361–371

    Article  CAS  PubMed  Google Scholar 

  • Turner M, O’Herlihy C (1984) Adrenal hypofunction and trisomy 18. Obstet Gynecol 6(Suppl 3):84–95

    Google Scholar 

  • Van Dyke DC, Allen M (1990) Clinical management in long-term survivors with trisomy 18. Pediatrics 85:753–759

    PubMed  Google Scholar 

  • Zhao Z, Rivkees SA (2004) Rho-associated kinases play a role in endocardial cell differentiation and migration. Devel Biol 275:183–191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project described was supported by Award Number R01 HD 042053-07 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (to DWB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Eunice Kennedy Shriver National Institute of Child Health & Human Development or the National Institutes of Health. The work was also supported by National Institutes of Health grant R01 HD 058880-01 (to DKS). The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana W. Bianchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 480 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koide, K., Slonim, D.K., Johnson, K.L. et al. Transcriptomic analysis of cell-free fetal RNA suggests a specific molecular phenotype in trisomy 18. Hum Genet 129, 295–305 (2011). https://doi.org/10.1007/s00439-010-0923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0923-3

Keywords

Navigation