Skip to main content

Advertisement

Log in

Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Synthetic lethal interaction is defined as a combination of two mutations that is lethal when present in the same cell; each individual mutation is non-lethal. Synthetic lethal interactions attract attention in cancer research fields since the discovery of synthetic lethal genes with either oncogenes or tumor suppressor genes (TSGs) provides novel cancer therapeutic targets. Due to the selective lethal effect on cancer cells harboring specific genetic alterations, it is expected that targeting synthetic lethal genes would provide wider therapeutic windows compared with cytotoxic chemotherapeutics. Here, we review the current status of the application of synthetic lethal screening in cancer research fields from biological and methodological viewpoints. Very recent studies seeking to identify synthetic lethal genes with K-RAS and p53, which are known to be the most frequently occurring oncogenes and TSGs, respectively, are introduced. Among the accumulating amount of research on synthetic lethal interactions, the synthetic lethality between BRCA1/2 and PARP1 inhibition has been clinically proven. Thus, both preclinical and clinical data showing a preferential anti-tumor effect on BRCA1/2 deficient tumors by a PARP1 inhibitor are the best examples of the synthetic lethal approach of cancer therapeutics. Finally, methodological progress regarding synthetic lethal screening, including barcode shRNA screening and in vivo synthetic lethal screening, is described. Given the fact that an increasing number of synthetic lethal genes for major cancerous genes have been validated in preclinical studies, this intriguing approach awaits clinical verification of preferential benefits for cancer patients with specific genetic alterations as a clear predictive factor for tumor response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    Article  CAS  PubMed  Google Scholar 

  • Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W, Harlow E, Munger K (2010) Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proc Natl Acad Sci USA 107:12463–12468

    Article  CAS  PubMed  Google Scholar 

  • Bang Y, Kwak EL, Shaw AT, Camidge DR, Iafrate AJ, Maki RG, Solomon BJ, Ou SI, Salgia R and Clark JW (2010) Clinical activity of the oral ALK inhibitor PF-02341066 in ALK-positive patients with non-small cell lung cancer (NSCLC). J Clin Oncol 28:18s (suppl; abstr 3)

    Google Scholar 

  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Fröhling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    Article  CAS  PubMed  Google Scholar 

  • Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, Linsley PS (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26:9377–9386

    Article  CAS  PubMed  Google Scholar 

  • Bassik MC, Lebbink RJ, Churchman LS, Ingolia NT, Patena W, LeProust EM, Schuldiner M, Weissman JS, McManus MT (2009) Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6:443–445

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  CAS  PubMed  Google Scholar 

  • Bommi-Reddy A, Almeciga I, Sawyer J, Geisen C, Li W, Harlow E, Kaelin WG Jr, Grueneberg DA (2008) Kinase requirements in human cells: III. Altered kinase requirements in VHL−/− cancer cells detected in a pilot synthetic lethal screen. Proc Natl Acad Sci USA 105:16484–16489

    Article  CAS  PubMed  Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    CAS  PubMed  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  CAS  PubMed  Google Scholar 

  • Cho D, Signoretti S, Regan M, Mier JW, Atkins MB (2007) The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res 13(2Pt2):758s–763s

    Article  CAS  PubMed  Google Scholar 

  • Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18:7883–7899

    Article  CAS  PubMed  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Eguchi T, Takaki T, Itadani H, Kotani H (2007) RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene 26:509–520

    Article  CAS  PubMed  Google Scholar 

  • Eguchi T, Itadani H, Shimomura T, Kawanishi N, Hirai H, Kotani H (2009) Expression levels of p18INK4C modify the cellular efficacy of cyclin-dependent kinase inhibitors via regulation of Mcl-1 expression in tumor cell lines. Mol Cancer Ther 8:1460–1472

    Article  CAS  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  PubMed  Google Scholar 

  • Ferrari E, Lucca C, Foiani M (2010) A lethal combination for cancer cells: synthetic lethality screenings for drug discovery. Eur J Cancer [Epub ahead of print]

  • Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  CAS  PubMed  Google Scholar 

  • Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP (1998) Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18:3735–3743

    CAS  PubMed  Google Scholar 

  • Garon EB, Finn RS, Hosmer W, Dering J, Ginther C, Adhami S, Kamranpour N, Pitts S, Desai A, Elashoff D, French T, Smith P, Slamon DJ (2010) Identification of common predictive markers of in vitro response to the Mek inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non-small cell lung cancer cell lines. Mol Cancer Ther 9:1985–1994

    Article  CAS  PubMed  Google Scholar 

  • Geller JI, Szekely-Szucs K, Petak I, Doyle B, Houghton JA (2004) P21Cip1 is a critical mediator of the cytotoxic action of thymidylate synthase inhibitors in colorectal carcinoma cells. Cancer Res 64:6296–6303

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Zheng Y (2004) Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 23:5577–5585

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K, Itadani H, Takahashi-Suzuki I, Fukasawa K, Oki H, Nambu T, Jiang J, Sakai T, Arakawa H, Sakamoto T, Sagara T, Yoshizumi T, Mizuarai S, Kotani H (2009) Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 8:2992–3000

    Article  CAS  PubMed  Google Scholar 

  • Janku F, Stewart DJ, Kurzrock R (2010) Targeted therapy in non-small-cell lung cancer—is it becoming a reality? Nat Rev Clin Oncol 7:401–414

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB, Hemann MT (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23:1895–1909

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, Waldman T (2002) Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 62:2744–2748

    CAS  PubMed  Google Scholar 

  • Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–471

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Kim JS, Waldman T (2004) PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res 64:6906–6914

    Article  CAS  PubMed  Google Scholar 

  • Löser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ (2010) Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther 9:1775–1787

    Article  PubMed  Google Scholar 

  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D (1991) mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64:1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848

    Article  CAS  PubMed  Google Scholar 

  • Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T (2010) North-East Japan Study Group Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  CAS  PubMed  Google Scholar 

  • Manser E, Chong C, Zhao ZS, Leung T, Michael G, Hall C, Lim L (1995) Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem 270:25070–25078

    Article  CAS  PubMed  Google Scholar 

  • Michiue H, Eguchi A, Scadeng M, Dowdy SF (2009) Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biol Ther 8:2306–2313

    PubMed  Google Scholar 

  • Mizuarai S, Yamanaka K, Kotani H (2006) Mutant p53 induces the GEF-H1 onogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. Cancer Res 66:6319–6326

    Article  CAS  PubMed  Google Scholar 

  • Mizuarai S, Irie H, Schmatz DM, Kotani H (2008) Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets. Curr Mol Med 8:774–783

    Article  CAS  PubMed  Google Scholar 

  • Mizuarai S, Yamanaka K, Itadani H, Arai T, Nishibata T, Hirai H, Kotani H (2009) Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor. Mol Cancer 8:34

    Article  PubMed  Google Scholar 

  • Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  • Morgillo F, Lee HY (2006) Lonafarnib in cancer therapy. Expert Opin Investig Drugs 15:709–719

    Article  CAS  PubMed  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Leal A, Rodríguez MI, Oliver FJ (2008) Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment. Clin Transl Oncol 10:318–323

    Article  CAS  PubMed  Google Scholar 

  • Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaría D, Barbacid M (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18:63–73

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189

    Article  CAS  PubMed  Google Scholar 

  • Rowley R, Hudson J, Young PG (1992) The wee1 protein kinase is required for radiation-induced mitotic delay. Nature 356:353–355

    Article  CAS  PubMed  Google Scholar 

  • Sainsbury A, Schwarzer C, Couzens M, Jenkins A, Oakes SR, Ormandy CJ, Herzog H (2002) Y4 receptor knockout rescues fertility in ob/ob mice. Genes Dev 16(9):1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Saxena N, Lahiri SS, Hambarde S, Tripathi RP (2008) RAS: target for cancer therapy. Cancer Invest 26:948–955

    Article  CAS  PubMed  Google Scholar 

  • Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, Westbrook TF, Liang AC, Chang K, Hackett JA, Harper JW, Hannon GJ, Elledge SJ (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  CAS  PubMed  Google Scholar 

  • Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, Döhner K, Bullinger L, Sandy P, Boehm JS, Root DE, Jacks T, Hahn WC, Gilliland DG (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137:821–834

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W, Lichtenstein A (2002) Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 62:5027–5034

    CAS  PubMed  Google Scholar 

  • Shor B, Gibbons JJ, Abraham RT, Yu K (2009) Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle 8:3831–3837

    CAS  PubMed  Google Scholar 

  • Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    CAS  PubMed  Google Scholar 

  • Smalley KS (2010) PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma. Curr Opin Investig Drugs 11:699–706

    CAS  PubMed  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362

    Article  CAS  PubMed  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300:143–149

    Article  CAS  PubMed  Google Scholar 

  • Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW (2001) Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 19:940–945

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105:3041–3046

    Article  CAS  PubMed  Google Scholar 

  • Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D’Haens G, Pintér T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  • Wang Y, Decker SJ, Sebolt-Leopold J (2004) Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 3:305–313

    CAS  PubMed  Google Scholar 

  • Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, Smith G, Powell JE, Rudzki Z, Kearns P, Moss PA, Taylor AM, Stankovic T (2010) The PARP inhibitor olaparib induces significant killing of ATM deficient lymphoid tumour cells in vitro and in vivo. Blood [Epub ahead of print]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehito Kotani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuarai, S., Kotani, H. Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements. Hum Genet 128, 567–575 (2010). https://doi.org/10.1007/s00439-010-0900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0900-x

Keywords

Navigation