Skip to main content
Log in

Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Infantile hypertrophic pyloric stenosis (IHPS) is the most common inherited form of gastrointestinal obstruction in infancy with a striking male preponderance. Infants present with vomiting due to gastric outlet obstruction caused by hypertrophy of the smooth muscle of the pylorus. Two loci specific to extended pedigrees displaying autosomal dominant inheritance have been identified. A genome scan identified loci on chromosomes 11q14–q22 and Xq23–q24 which are predicted to be responsible for a subset of smaller families with IHPS demonstrating non-Mendelian inheritance. The two linked chromosomal regions both harbour functional candidate genes which are members of the canonical transient receptor potential (TRPC) family of ion channels. Both TRPC5 (Xq23–q24) and TRPC6 (11q14–q22) have a potential role in smooth muscle control and hypertrophy. Here, we report suggestive evidence for a third locus on chromosome 3q12–q25 (Z max = 2.7, p < 0.004), a region which harbours a third TRPC gene, TRPC1. Fine mapping of all three genes using a tagSNP approach and re-sequencing identified a SNP in the promoter region of TRPC6 and a missense variant in exon 4 of TRPC6 which may be putative causal variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Brouwers AG, Waals-van de Wal CM (2009) Hypertrophic pyloric stenosis and pulmonary hypertension in a neonate. A common mechanism? Acta Paediatr 98:1064–1065

  • Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496

    Article  CAS  PubMed  Google Scholar 

  • Capon F, Reece A, Ravindrarajah R, Chung E (2006) Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16p12–p13 and evidence for genetic heterogeneity. Am J Hum Genet 79:378–382

    Article  CAS  PubMed  Google Scholar 

  • Carter CO (1961) The inheritance of congenital pyloric stenosis. Br Med Bull 17:251–254

    CAS  PubMed  Google Scholar 

  • Carter CO, Powell BW (1954) Two-generation pyloric stenosis. Lancet 266:746–748

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Park CS, Hwang M, Nam HY, Chang HS, Park SG, Han BG, Kimm K, Kim HL, Oh B, Kim Y (2008) A common intronic variant of CXCR3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. J Allergy Clin Immunol 122:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Curtis D, Chen G, Marsden PA, Twells R, Xu W, Gardiner M (1996) Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric stenosis. Am J Hum Genet 58:363–370

    CAS  PubMed  Google Scholar 

  • Chung RH, Hauser ER, Martin ER (2006) The APL test: extension to general nuclear families and haplotypes and examination of its robustness. Hum Hered 61:189–199

    Article  PubMed  Google Scholar 

  • Chung RH, Morris RW, Zhang L, Li YJ, Martin ER (2007) X-APL: an improved family-based test of association in the presence of linkage for the X chromosome. Am J Hum Genet 80:59–68

    Article  CAS  PubMed  Google Scholar 

  • de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760

    Article  CAS  PubMed  Google Scholar 

  • Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    Article  CAS  PubMed  Google Scholar 

  • Everett KV, Capon F, Georgoula C, Chioza BA, Reece A, Jaswon M, Pierro A, Puri P, Gardiner RM, Chung EM (2008a) Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16q24. Eur J Hum Genet 16:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Everett KV, Chioza BA, Georgoula C, Reece A, Capon F, Parker KA, Cord-Udy C, McKeigue P, Mitton S, Pierro A, Puri P, Mitchison HM, Chung EM, Gardiner RM (2008b) Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14–q22 and Xq23. Am J Hum Genet 82:756–762

    Article  CAS  PubMed  Google Scholar 

  • Finsen VR (1979) Infantile hypertrophic pyloric stenosis—unusual familial incidence. Arch Dis Child 54:720–721

    Article  CAS  PubMed  Google Scholar 

  • Fried K, Aviv S, Nisenbaum C (1981) Probable autosomal dominant infantile pyloric stenosis in a large kindred. Clin Genet 20:328–330

    Article  CAS  PubMed  Google Scholar 

  • Heller A, Seidel J, Hubler A, Starke H, Beensen V, Senger G, Rocchi M, Wirth J, Chudoba I, Claussen U, Liehr T (2000) Molecular cytogenetic characterisation of partial trisomy 9q in a case with pyloric stenosis and a review. J Med Genet 37:529–532

    Article  CAS  PubMed  Google Scholar 

  • Hodgson SV, Berry AC, Dunbar HM (1995) Two brothers with an unbalanced 8;17 translocation and infantile pyloric stenosis. Clin Genet 48:328–330

    CAS  PubMed  Google Scholar 

  • Hohoff C, Neumann A, Domschke K, Jacob C, Maier W, Fritze J, Bandelow B, Krakowitzky P, Rothermundt M, Arolt V, Deckert J (2008) Association analysis of Rgs7 variants with panic disorder. J Neural Transm (submitted)

  • Huang CL (2004) The transient receptor potential superfamily of ion channels. J Am Soc Nephrol 15:1690–1699

    Article  CAS  PubMed  Google Scholar 

  • Jackson L, Kline AD, Barr MA, Koch S (1993) de Lange syndrome: a clinical review of 310 individuals. Am J Med Genet 47:940–946

    Article  CAS  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284:G604–G616

    CAS  PubMed  Google Scholar 

  • Liu CK, Chen YH, Tang CY, Chang SC, Lin YJ, Tsai MF, Chen YT, Yao A (2008) Functional analysis of novel SNPs and mutations in human and mouse genomes. BMC Bioinform 9(Suppl 12):S10

    Article  CAS  Google Scholar 

  • MacMahon B (2006) The continuing enigma of pyloric stenosis of infancy: a review. Epidemiology 17:195–201

    Article  PubMed  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  CAS  PubMed  Google Scholar 

  • Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67:146–154

    Article  CAS  PubMed  Google Scholar 

  • Martin ER, Bass MP, Kaplan NL (2001) Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 68:1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Martin ER, Bass MP, Hauser ER, Kaplan NL (2003) Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 73:1016–1026

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LE, Risch N (1993) The genetics of infantile hypertrophic pyloric stenosis. A reanalysis. Am J Dis Child 147:1203–1211

    CAS  PubMed  Google Scholar 

  • Moller CC, Mangos S, Drummond IA, Reiser J (2008) Expression of trpC1 and trpC6 orthologs in zebrafish. Gene Expr Patterns 8:291–296

    Article  CAS  PubMed  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

  • Murtagh K, Perry P, Corlett M, Fraser I (1992) Infantile hypertrophic pyloric stenosis. Dig Dis 10:190–198

    Article  CAS  PubMed  Google Scholar 

  • Ott J (1989) Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci USA 86:4175–4178

    Article  CAS  PubMed  Google Scholar 

  • Oue T, Puri P (1999) Smooth muscle cell hypertrophy versus hyperplasia in infantile hypertrophic pyloric stenosis. Pediatr Res 45:853–857

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69:124–137

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common disease-common variant or not? Hum Mol Genet 11:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Raponi M, Upadhyaya M, Baralle D (2006) Functional splicing assay shows a pathogenic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence exonization. Hum Mutat 27:294–295

    Article  CAS  PubMed  Google Scholar 

  • Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109:95–104

    Article  CAS  PubMed  Google Scholar 

  • Saur D, Vanderwinden JM, Seidler B, Schmid RM, De Laet MH, Allescher HD (2004) Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Natl Acad Sci USA 101:1662–1667

    Article  CAS  PubMed  Google Scholar 

  • Schechter R, Torfs CP, Bateson TF (1997) The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol 11:407–427

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Lemli L, Opitz JM (1964) A newly recognised syndrome of multiple congenital anomalies. J Pediatr 64:210–217

    Article  CAS  PubMed  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591

    Article  CAS  PubMed  Google Scholar 

  • Tremblay K, Daley D, Chamberland A, Lemire M, Montpetit A, Laviolette M, Musk AW, James AL, Chan-Yeung M, Becker A, Kozyrskyj AL, Sandford AJ, Hudson TJ, Pare PD, Laprise C (2008) Genetic variation in immune signaling genes differentially expressed in asthmatic lung tissues. J Allergy Clin Immunol 122:529–536

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Akey JM, Zhang K, Chakraborty R, Jin L (2002) Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 71:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Weeks DE, Ott J, Lathrop GM (1990) SLINK: a general simulation program for linkage analysis. Am J Hum Genet 47(Suppl). A204

    Google Scholar 

  • Whittemore AS, Halpern J (1994) A class of tests for linkage using affected pedigree members. Biometrics 50:118–127

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866

    Article  CAS  PubMed  Google Scholar 

  • Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Newlife Foundation and Action Medical Research. We are very grateful to all the families that participated in this study. We would like to thank Professors Prem Puri and Agostino Pierro, Dr Sally Mitton, and Mrs Cathy Cord-Udy as well as K. Rogers, N. Johnson, A. Massoud and J. Mulligan for their contribution to the family ascertainment effort. We would like to thank K. Parker for technical assistance and H. Mitchison for critical assessment of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate V. Everett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Everett, K.V., Chioza, B.A., Georgoula, C. et al. Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genet 126, 819–831 (2009). https://doi.org/10.1007/s00439-009-0735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0735-5

Keywords

Navigation