Skip to main content
Log in

Mutation screening of apical sodium-dependent bile acid transporter (SLC10A2): novel haplotype block including six newly identified variants linked to reduced expression

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The apical sodium-dependent bile acid transporter (SLC10A2) plays a key role in the reabsorption of luminal bile acids into the enterohepatic circulation. Rare variations in SLC10A2 have been reported to be associated with Crohn’s disease, primary bile acid malabsorption and familial hypertriglyceridemia; however, variants associated with reduced SLC10A2 expression have not been reported to date. In this study, we have performed a sequence analysis of SLC10A2 using genomic DNA of 93 individuals. A new haplotype structure was identified including ten variants with complete linkage disequilibrium (LD′ = 1.0, r 2 = 1.0) of which six polymorphisms were novel. The sequence variants were confirmed in three independent cohorts (n = 1,290) by a recently established MALDI-TOF MS iPLEX™ assay. Remarkably, haplotype carriers with the minor allele exhibited significant reduced ileal SLC10A2 expression on mRNA levels (2.6-fold, P = 0.0009) and protein levels (2.4-fold, P = 0.0157). In future studies a single tag SNP selected of this haplotype block will provide reliable genetic testing to investigate systemically the influence of the SLC10A2 haplotype for disease susceptibility and/or drug response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Ansari N, Xu G, Kollman-Bauerly K, Coppola C, Shefer S, Ujhazy P, Ortiz D, Ma L, Yang S, Tsai R, Salen G, Vanderhoof J, Shneider BL (2002) Analysis of the effect of intestinal resection on rat ileal bile acid transporter expression and on bile acid and cholesterol homeostasis. Pediatr Res 52(2):286–291

    PubMed  CAS  Google Scholar 

  • Alrefai WA, Sarwar Z, Tyagi S, Saksena S, Dudeja PK, Gill RK (2005) Cholesterol modulates human intestinal sodium-dependent bile acid transporter. Am J Physiol Gastrointest Liver Physiol 288(5):G978–G985

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  • Bergheim I, Harsch S, Mueller O, Schimmel S, Fritz P, Stange EF (2006) Apical sodium bile acid transporter and ileal lipid binding protein in gallstone carriers. J Lipid Res 47(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Berr F, Pratschke E, Fischer S, Paumgartner G (1992) Disorders of bile acid metabolism in cholesterol gallstone disease. J Clin Invest 90(3):859–868

    Article  PubMed  CAS  Google Scholar 

  • Berr F, Kullak-Ublick GA, Paumgartner G, Münzing W, Hylemon PB (1996) 7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology 111(6):1611–1620

    Article  PubMed  CAS  Google Scholar 

  • Castro J, Amigo L, Miquel JF, Gälman C, Crovari F, Raddatz A, Zanlungo S, Jalil R, Rudling M, Nervi F (2007) Increased activity of hepatic microsomal triglyceride transfer protein and bile acid synthesis in gallstone disease. Hepatology 45(5):1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Ma L, Al-Ansari N, Shneider B (2001) The role of AP-1 in the transcriptional regulation of the rat apical sodium-dependent bile acid transporter. J Biol 276(42):38703–38714

    CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  • Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157–G169

    PubMed  CAS  Google Scholar 

  • Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS (2003) Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 278(36):33920–33927

    Article  PubMed  CAS  Google Scholar 

  • Duane WC, Hartich LA, Bartman AE, Ho SB (2000) Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 41(9):1384–1389

    PubMed  CAS  Google Scholar 

  • Duane WC, Xiong W, Wolvers J (2007) Effects of bile acids on expression of the human apical sodium dependent bile acid transporter gene. Biochim Biophys Acta 1771(11):1380–1388

    PubMed  CAS  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Grünhage F, Jungck M, Lamberti C, Keppeler H, Becker U, Schulte-Witte H, Plassmann D, Friedrichs N, Buettner R, Aretz S, Sauerbruch T, Lammert F (2008) Effects of common haplotypes of the ileal sodium dependent bile acid transporter gene on the development of sporadic and familial colorectal cancer: a case control study. BMC Med Genet 9:70

    Article  PubMed  Google Scholar 

  • Haenle MM, Brockmann SO, Kron M, Bertling U, Mason RA, Steinbach G, Boehm BO, Koenig W, Kern P, Piechotowski I, Kratzer W, EMIL-Study group (2006) Overweight, physical activity, tobacco and alcohol consumption in a cross-sectional random sample of German adults. BMC Public Health 6:233

    Article  PubMed  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26(1):362–367

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF, Schteingart CD, Lillienau J (1991) Biological and medical aspects of active ileal transport of bile acids. Ann Med 23(2):169–175

    Article  PubMed  CAS  Google Scholar 

  • Kern F Jr (1994) Effects of dietary cholesterol on cholesterol and bile acid homeostasis in patients with cholesterol gallstones. J Clin Invest 93(3):1186–1194

    Article  PubMed  Google Scholar 

  • Klass DM, Lauer N, Hay B, Kratzer W, Fuchs M, EMIL Study Group (2007) Arg64 variant of the beta3-adrenergic receptor is associated with gallstone formation. Am J Gastroenterol 102(11):2482–2487

    Article  PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342

    Article  PubMed  CAS  Google Scholar 

  • Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF (1997) Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 100(11):2714–2721

    Article  PubMed  CAS  Google Scholar 

  • Love MW, Craddock AL, Angelin B, Brunzell JD, Duane WC, Dawson PA (2001) Analysis of the ileal bile acid transporter gene, SLC10A2, in subjects with familial hypertriglyceridemia. Arterioscler Thromb Vasc Biol 21(12):2039–2045

    Article  PubMed  CAS  Google Scholar 

  • Montagnani M, Love MW, Rössel P, Dawson PA, Qvist P (2001) Absence of dysfunctional ileal sodium-bile acid cotransporter gene mutations in patients with adult-onset idiopathic bile acid malabsorption. Scand J Gastroenterol 36(10):1077–1080

    Article  PubMed  CAS  Google Scholar 

  • Montagnani M, Abrahamsson A, Gälman C, Eggertsen G, Marschall HU, Ravaioli E, Einarsson C, Dawson PA (2006) Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption. World J Gastroenterol 12(47):7710–7714

    PubMed  Google Scholar 

  • Neimark E, Chen F, Li X, Shneider BL (2004) Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40(1):149–156

    Article  PubMed  CAS  Google Scholar 

  • Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997) Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 99(8):1880–1887

    Article  PubMed  CAS  Google Scholar 

  • Renner O, Harsch S, Strohmeyer A, Schimmel S, Stange EF (2008) Reduced ileal expression of OST{alpha}-OST{beta} in non-obese gallstone disease. J Lipid Res 49(9):2045–2054

    Article  PubMed  CAS  Google Scholar 

  • Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, Zanger UM, Schwab M (2004) Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14(7):407–417

    Article  PubMed  CAS  Google Scholar 

  • Scheibner J, Stange EF, Fuchs M (2001) Indirect evidence that intestinal bile salt absorption in rats and hamsters is under positive feedback control. Z Gastroenterol 39(11):929–936

    Article  PubMed  CAS  Google Scholar 

  • Shneider BL, Setchell KD, Crossman MW (1997) Fetal and neonatal expression of the apical sodium-dependent bile acid transporter in the rat ileum and kidney. Pediatr Res 42(2):189–194

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Landrier JF, Gaillard D, Grober J, Monnot MC, Athias A, Besnard P (2006) Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences. Gut 55(9):1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Xue S, Ingles SA, Chen Q, Diep AT, Frankl HD, Stolz A, Haile RW (2001) An association between genetic polymorphisms in the ileal sodium-dependent bile acid transporter gene and the risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 10(9):931–936

    PubMed  CAS  Google Scholar 

  • Westergaard H (2007) Bile Acid malabsorption. Curr Treat Options Gastroenterol 10(1):28–33

    Article  PubMed  Google Scholar 

  • Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet 76(5):887–893

    Article  PubMed  CAS  Google Scholar 

  • Wong MH, Oelkers P, Dawson PA (1995) Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 270(45):27228–27234

    Article  PubMed  CAS  Google Scholar 

  • Wong MH, Rao PN, Pettenati MJ, Dawson PA (1996) Localization of the ileal sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33. Genomics 33(3):538–540

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Shneider BL, Shefer S, Nguyen LB, Batta AK, Tint GS, Arrese M, Thevananther S, Ma L, Stengelin S, Kramer W, Greenblatt D, Pcolinsky M, Salen G (2000) Ileal bile acid transport regulates bile acid pool, synthesis, and plasma cholesterol levels differently in cholesterol-fed rats and rabbits. J Lipid Res 41(2):298–304

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Robert Bosch Foundation, Stuttgart. We are grateful to Dr. P. A. Dawson (Wake Forest University, Winston-Salem, USA) for the generous gift of the ASBT primary antibody. Moreover, we thank the staff of the gastroenterological department and endoscopy team for recruitment of patients and collecting tissue biopsies. The authors also thank Dr. Christina Justenhoven for the helpful and competent discussion by preparation of this manuscript. The authors are also very grateful to André Strohmeyer for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard F. Stange.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (EPS 59 kb)

439_2009_630_MOESM2_ESM.eps

Influence of haplotype block on SLC10A2 mRNA and protein expression comparing individuals without haplotype block (n=74) to carriers of the haplotype (n=11). The expression analysis was performed in human ileal mucosal biopsies and is represented as scatter dot plot (a) and as well as box and whiskers (b). Quantitative analysis of SLC10A2 mRNA expression is given as transcript numbers. All data are represented as means ± SEM. A P value of <0.05 was considered statistically significant (EPS 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, O., Harsch, S., Schaeffeler, E. et al. Mutation screening of apical sodium-dependent bile acid transporter (SLC10A2): novel haplotype block including six newly identified variants linked to reduced expression. Hum Genet 125, 381–391 (2009). https://doi.org/10.1007/s00439-009-0630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0630-0

Keywords

Navigation