Skip to main content
Log in

Investigation of the origins of human autosomal inversions

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

A significant proportion of both pericentric and paracentric inversions have recurrent breakpoints and so could either have arisen through multiple independent events or be identical by descent (IBD) with a single common ancestor. Of two common variant inversions previously studied, the inv(2)(p11q13) was genuinely recurrent while the inv(10)(p11.2q21.2) was IBD in all cases tested. Excluding these two variants we have ascertained 257 autosomal inversion probands at the Wessex Regional Genetics Laboratory. There were 104 apparently recurrent inversions, representing 35 different breakpoint combinations and we speculated that at least some of these had arisen on more than one occasion. However, haplotype analysis identified no recurrent cases among eight inversions tested, including the variant inv(5)(p13q13). The cases not IBD were shown to have different breakpoints at the molecular cytogenetic level. No crossing over was detected within any of the inversions and the founder haplotypes extended for variable distances beyond the inversion breakpoints. Defining breakpoint intervals by FISH mapping identified no obvious predisposing elements in the DNA sequence. In summary the vast majority of human inversions arise as unique events. Even apparently recurrent inversions, with the exception of the inv(2)(p12q13), are likely to be either derived from a common ancestor or to have subtly different breakpoints. Presumably the lack of selection against most inversions allows them to accumulate and disperse amongst different populations over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allderdice PW, Browne N, Murphy DP (1975) Chromosome 3 duplication q21->qter deletion p25->pter syndrome in children of carriers of a pericentric inversion inv(3)(p25q31). Am J Hum Genet 27:699–718

    PubMed  CAS  Google Scholar 

  • Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, Thomas NS, Jacobs PA, Crolla JA (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82:927–936

    Article  PubMed  CAS  Google Scholar 

  • Beiraghi S, Zhou M, Talmadge CB, Went-Sumegi CB, Davis JR, Huang D, Saal H, Seemayer TA, Sumegi J (2003) Identification and characterisation of a novel gene disrupted by a pericentric inversion inv(4)(p13.1q21.1) in a family with cleft lip. Gene 309:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bhatt S, Moradkhani K, Mrasek K, Puechberty J, Lefort G, Lespinasse J, Sarda P, Liehr T, Hamamah S, Pellestor F (2007) Breakpoint characterisation: a new approach for segregation analysis of paracentric inversion in human sperm. Hum Reprod 13:751–756

    Article  CAS  Google Scholar 

  • Chodirker BN, Greenberg CR, Pabello PD, Chundley AE (1992) Paracentric inversion 11q in Canadian Hutterites. Hum Genet 89:450–452

    Article  PubMed  CAS  Google Scholar 

  • Daniel A, Hook EB, Wulf G (1989) Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories. Am J Med Genet 431:14–53

    Article  Google Scholar 

  • Fantes JA, Boland E, Ramsay J, Donnai D, Splitt M, Goodship JA, Stewart H, Whiteford M, Gautier P, Harewood L, Holloway S, Sharkey F, Maher E, van Heyningen V, Clayton-Smith J, Fitzpatrick DR, Black GCM (2008) FISH mapping of de novo apparently balanced chromosome rearrangements identified characteristics associated with phenotypic abnormality. Am J Hum Genet 82:916–926

    Article  PubMed  CAS  Google Scholar 

  • Fickelscher I, Liehr T, Watts K, Bryant V, Barber JCK, Heidemann S, Siebert R, Hertz JM, Tumer Z, Thomas NS (2007) The variant inv(2)(p11.2q13) is a genuinely recurrent rearrangement but displays some breakpoint heterogeneity. Am J Hum Genet 81:847–856

    Article  PubMed  CAS  Google Scholar 

  • Gardner RJM, Sutherland GT (1996) Chromosome abnormalities and genetic counselling, 2nd edn. Oxford University Press, New York, pp 115–182

  • Gilling M, Dullinger JS, Gesk S, Metzke-Heidemann S, Siebert R, Meyer T, Brondum-Nielsen K, Tommerup N, Ropers HH, Tumer Z, Kalscheuer VM, Thomas NS (2006) Breakpoint cloning and haplotype analysis indicate a single origin of the common inv(10)(p11.2q21.2) among Northern Europeans. Am J Hum Genet 78:878–883

    Article  PubMed  CAS  Google Scholar 

  • Graw SL, Sample T, Bleskan J, Sujansky E, Patterson D (2000) Cloning, sequencing and analysis of Inv8 chromosome breakpoints associated with recombinant 8 syndrome. Am J Hum Genet 66:1138–1144

    Article  PubMed  CAS  Google Scholar 

  • Hysert M, Bruyere H, Cote GB, Dawson AJ, Dolling J-A, Fetni R, Hrynchak M, Lavoie J, McGowan-Jordan J, Tihy F, Duncan AMV (2006) Prenatal cytogenetic assessment and inv(2)(p11.2q13). Prenat Diagn 26:810–813

    Article  PubMed  Google Scholar 

  • Iida A, Emi M, Matsuoka R, Hiratsuka R, Okui K, Ohashi H, Inazawa J, Fukushima Y, Imai T, Nakamura Y (2000) Identification of a gene disrupted by inv(11)(q13.5q25) in a patient with left–right axis malformation. Hum Genet 106:277–287

    Article  PubMed  CAS  Google Scholar 

  • Jacobs PA, Frackiewicz A, Law P, Hilditch J, Morton NE (1975) The effect of structural aberrations of the chromosomes on reproductive fitness in man. II. Results. Clin Genet 8:169–178

    PubMed  CAS  Google Scholar 

  • Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76:8–32

    Article  PubMed  CAS  Google Scholar 

  • Madan K, Pieters MHEC, Kuyt LP, van Asperen CJ, de Pater JM, Hammers AJH, Gerssen-Schoorl KBJ, Hustinx TWJ, Breed ASPM, Van Hemel JO, Smeets DFCM (1990) Paracentric inversion inv(11)(q21q23) in the Netherlands. Hum Genet 85:15–20

    Article  PubMed  CAS  Google Scholar 

  • Morel F, Laudier B, Guerif F, Couet ML, Royere D, Roux C, Bresson JL, Amice V, De Braekeleer M, Douet-Guilbert N (2007) Meiotic segregation analysis in spermatozoa of pericentric inversion carriers using fluorescence in-situ hybridization. Hum Reprod 22:136–141

    Article  PubMed  CAS  Google Scholar 

  • Pettenati MJ, Rao PN, Phelan MC, Grass F, Rao KW, Cosper P, Carroll AJ, Elder F, Smith JL, Higgins MD, Lanman JT, Higgins RR, Butler MG, Luthardt F, Keitges E, Jackson-Cook C, Brown J, Schwartz S, Van Dyke DL, Palmer GG (1995) Paracentric inversions in Humans: a review of 446 paracentric inversions with presentation of 120 new cases. Am J Med Genet 55:171–187

    Article  PubMed  CAS  Google Scholar 

  • Saito-Ohara H, Fukuda Y, Ito M, Agarwala KL, Hayashi M, Matsuo M, Imoto I, Yamakawa K, Nakamura Y, Inazawa J (2002) The Xq22 inversion breakpoint interrupted a novel Ras-Like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation. Am J Hum Genet 71:637–645

    Article  PubMed  CAS  Google Scholar 

  • Sakharkar MK, Chow VT, Kangueane P (2004) Distribution of exons and introns in the human genome. In Silico Biol 4:387–393

    PubMed  CAS  Google Scholar 

  • Shaw CJ, Lupski JR (2004) Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet 13:R57–R64

    Article  PubMed  CAS  Google Scholar 

  • Sherman SL, Iselius L, Gallano P, Buckton K, Collyer S, De Mey R, Kristoffersson U, Lindsten J, Mikkelsen M, Morton NE, Newton M, Nordensson I, Petersen MB, Wahlstrom J (1986) Segregation analysis of balanced pericentric inversions in pedigree data. Clin Genet 30:87–94

    PubMed  CAS  Google Scholar 

  • Smith AC, Spuhler K, Williams TM, McConnell T, Sujansky E, Robinson A (1987) Genetic risk for recombinant 8 syndrome and the transmission rate of balanced inversion 8 in the Hispanic population of the south western United States. Am J Hum Genet 41:1083–1103

    PubMed  CAS  Google Scholar 

  • Sood R, Bader PI, Speer MC, Edwards YH, Eddings EM, Blair RT, Hu P, Faruque MU, Robbins CM, Zhang H, Leuders J, Morrison K, Thompson D, Schartzberg PL, Meltzer PS, Trent JM (2004) Cloning and characterisation of an inversion breakpoint at 6q23.3 suggests a role for Map7 in sacral dysgenesis. Cytogenet Genome Res 106:61–67

    Article  PubMed  CAS  Google Scholar 

  • Tadin-Strapps M, Warburton D, Baumeister FA, Fischer SG, Yonan J, Gilliam TC, Christiano AM (2004) Cloning of the breakpoints of a de novo inversion of chromosome 8, inv(8)(p11.2q23.1) in a patient with Ambras syndrome. Genome Res 107:68–76

    CAS  Google Scholar 

  • Youings S, Ellis K, Ennis S, Barber J, Jacobs P (2004) A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation and recurrent abnormalities. Am J Med Genet 126A:46–60

    Article  Google Scholar 

  • Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49:995–1013

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Mrs. Barbara O’Prey for obtaining patient samples and Dr. Katherine Lachlan for supplying clinical information for phenotype–genotype correlations. Dr. Claire Scott (claire.scott@orh.nhs.uk) kindly provided inversion data from the Chromosome Abnormality Database (funded by BDF Newlife) and additional DNA samples were obtained from Dr. Leema Robert and Dr. Caroline MacKie-Ogilvie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Simon Thomas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary tables (DOC 323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N.S., Bryant, V., Maloney, V. et al. Investigation of the origins of human autosomal inversions. Hum Genet 123, 607–616 (2008). https://doi.org/10.1007/s00439-008-0510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-008-0510-z

Keywords

Navigation