Skip to main content
Log in

Evolutionary analysis of genes of two pathways involved in placental malaria infection

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Placental malaria is a special form of malaria that causes up to 200,000 maternal and infant deaths every year. Previous studies show that two receptor molecules, hyaluronic acid and chondroitin sulphate A, are mediating the adhesion of parasite-infected erythrocytes in the placenta of patients, which is believed to be a key step in the pathogenesis of the disease. In this study, we aimed at identifying sites of malaria-induced adaptation by scanning for signatures of natural selection in 24 genes in the complete biosynthesis pathway of these two receptor molecules. We analyzed a total of 24 Mb of publicly available polymorphism data from the International HapMap project for three human populations with European, Asian and African ancestry, with the African population from a region of presently and historically high malaria prevalence. Using the methods based on allele frequency distributions, genetic differentiation between populations, and on long-range haplotype structure, we found only limited evidence for malaria-induced genetic adaptation in this set of genes in the African population; however, we identified one candidate gene with clear evidence of selection in the Asian population. Although historical exposure to malaria in this population cannot be ruled out, we speculate that it might be caused by other pathogens, as there is growing evidence that these molecules are important receptors in a variety of host-pathogen interactions. We propose to use the present methods in a systematic way to help identify candidate regions under positive selection as a consequence of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12:1805–1814

    Article  PubMed  CAS  Google Scholar 

  • Ayodo G, Price AL, Keinan A, Ajwang A, Otieno MF, Orago AS, Patterson N, Reich D (2007) Combining evidence of natural selection with association analysis increases power to detect malaria-resistance variants. Am J Hum Genet 81:234–242

    Article  PubMed  CAS  Google Scholar 

  • Bamshad M, Wooding SP (2003) Signatures of natural selection in the human genome. Nat Rev Genet 4:99–111

    Article  PubMed  CAS  Google Scholar 

  • Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, Lawson AM, Molyneux ME, Brown GV (2000) Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6:86–90

    Article  PubMed  CAS  Google Scholar 

  • Brabin BJ (1983) An analysis of malaria in pregnancy in Africa. Bull World Health Organ 61:1005–1116

    PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Feldman MW (2003) The application of molecular genetic approaches to the study of human evolution. Nat Genet 33(Suppl):266–275

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, Princeton

    Google Scholar 

  • Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, Newman RD (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7:93–104

    Article  PubMed  Google Scholar 

  • Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I (2002) Identification of a variant associated with adult-type hypolactasia. Nat Genet 30:233–237

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fried M, Domingo GJ, Gowda CD, Mutabingwa TK, Duffy PE (2006) Plasmodium falciparum: chondroitin sulfate A is the major receptor for adhesion of parasitized erythrocytes in the placenta. Exp Parasitol 113:36–42

    Article  PubMed  CAS  Google Scholar 

  • Gardner M, Williamson S, Casals F, Bosch E, Navarro A, Calafell F, Bertranpetit J, Comas D (2007) Extreme individual marker F(ST )values do not imply population-specific selection in humans: the NRG1 example. Hum Genet 121:759–762

    Article  PubMed  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  PubMed  CAS  Google Scholar 

  • Hanchard NA, Rockett KA, Spencer C, Coop G, Pinder M, Jallow M, Kimber M, McVean G, Mott R, Kwiatkowski DP (2006) Screening for recently selected alleles by analysis of human haplotype similarity. Am J Hum Genet 78:153–159

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77:171–192

    Article  PubMed  CAS  Google Scholar 

  • McGregor IA, Wilson ME, Billewicz WZ (1983) Malaria infection of the placenta in The Gambia, West Africa; its incidence and relationship to stillbirth, birthweight and placental weight. Trans R Soc Trop Med Hyg 77:232–244

    Article  PubMed  CAS  Google Scholar 

  • Menendez C, Ordi J, Ismail MR, Ventura PJ, Aponte JJ, Kahigwa E, Font F, Alonso PL (2000) The impact of placental malaria on gestational age and birth weight. J Infect Dis 181:1740–1745

    Article  PubMed  CAS  Google Scholar 

  • Min-Oo G, Gros P (2005) Erythrocyte variants and the nature of their malaria protective effect. Cell Microbiol 7:753–763

    Article  PubMed  CAS  Google Scholar 

  • Mutabingwa TK, Bolla MC, Li JL, Domingo GJ, Li X, Fried M, Duffy PE (2005) Maternal malaria and gravidity interact to modify infant susceptibility to malaria. PLoS Med 2:e407

    Article  PubMed  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Ohashi J, Naka I, Patarapotikul J, Hananantachai H, Brittenham G, Looareesuwan S, Clark AG, Tokunaga K (2004) Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection. Am J Hum Genet 74:1198–1208

    Article  PubMed  CAS  Google Scholar 

  • Okoko BJ, Ota MO, Yamuah LK, Idiong D, Mkpanam SN, Avieka A, Banya WA, Osinusi K (2002) Influence of placental malaria infection on foetal outcome in the Gambia: twenty years after Ian Mcgregor. J Health Popul Nutr 20:4–11

    PubMed  Google Scholar 

  • Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7:105–117

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES (2006) Positive natural selection in the human lineage. Science 312:1614–1620

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KAPI, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RAPI, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang HPI, Zeng CPI, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SBPL, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler DPI, Shen YPI, Yao Z, Huang WPI, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MMPI, Tsui SK, Xue H, Tze-Fei Wong J, Galver LMPL, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MSPI, Montpetit APL, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJPI, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918

    Article  PubMed  CAS  Google Scholar 

  • Soldevila M, Calafell F, Helgason A, Stefansson K, Bertranpetit J (2005) Assessing the signatures of selection in PRNP from polymorphism data: results support Kreitman and Di Rienzo’s opinion. Trends Genet 21:389–391

    Article  PubMed  CAS  Google Scholar 

  • Steketee RW, Wirima JJ, Slutsker L, Heymann DL, Breman JG (1996) The problem of malaria and malaria control in pregnancy in sub-Saharan Africa. Am J Trop Med Hyg 55:2–7

    PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13:612–620

    Article  PubMed  CAS  Google Scholar 

  • Tang K, Thornton KR, Stoneking M (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol 5:e171

    Article  PubMed  Google Scholar 

  • The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  • The International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  • Tishkoff SA, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G, Destro-Bisol G, Drousiotou A, Dangerfield B, Lefranc G, Loiselet J, Piro A, Stoneking M, Tagarelli A, Tagarelli G, Touma EH, Williams SM, Clark AG (2001) Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293:455–462

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12:117R–125R

    Article  PubMed  CAS  Google Scholar 

  • Varki A (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72

    Article  PubMed  Google Scholar 

  • Walsh EC, Sabeti P, Hutcheson HB, Fry B, Schaffner SF, de Bakker PI, Varilly P, Palma AA, Roy J, Cooper R, Winkler C, Zeng Y, de The G, Lander ES, O’Brien S, Altshuler D (2006) Searching for signals of evolutionary selection in 168 genes related to immune function. Hum Genet 119:92–102

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15:1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Wood ET, Stover DA, Slatkin M, Nachman MW, Hammer MF (2005) The beta -globin recombinational hotspot reduces the effects of strong selection around HbC, a recently arisen mutation providing resistance to malaria. Am J Hum Genet 77:637–642

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2005) World Malaria Report 2005

Download references

Acknowledgments

This study funded by Ministerio de Educación y Ciencia, Spain (SAF2007-63171 to JB, and BFU2005-00243), Direcció General de Recerca, Generalitat de Catalunya (Grup de Recerca Consolidat 2005SGR/00608) and the National Institute for Bioinformatics (www.inab.org), a platform of Genoma España. MS is supported by a Ph.D. fellowship from the Programa de becas FPU del Ministerio de Educación y Ciencia, Spain (AP2005-3982). We are grateful to Pedro Alonso and Clara Menéndez for fruitful discussion about the pathogenesis of placental malaria. We also would like to thank Elena Bosch, Francesc Calafell, David Comas and Arcadi Navarro for providing very useful comments on the draft version of the manuscript and Andrés Moreno for helpful discussion. We also thank four anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Casals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information (DOC 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikora, M., Ferrer-Admetlla, A., Mayor, A. et al. Evolutionary analysis of genes of two pathways involved in placental malaria infection. Hum Genet 123, 343–357 (2008). https://doi.org/10.1007/s00439-008-0483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-008-0483-y

Keywords

Navigation