Skip to main content

Advertisement

Log in

High-density oligonucleotide array with sub-kilobase resolution reveals breakpoint information of submicroscopic deletions in nevoid basal cell carcinoma syndrome

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Small submicroscopic genomic deletions and duplications constitute up to 15% of all mutations underlying human monogenic diseases. In this study, we used newly designed high-resolution oligonucleotide microarrays with a median distance between the probes of 776 bp (average probe interval 2,271 bp) to detect gene deletions in nevoid basal cell carcinoma syndrome (NBCCS) patients. NBCCS, also called Gorlin syndrome, is characterized by developmental defects and tumorigenesis such as medulloblastomas and basal cell carcinomas, caused by mutations of the human patched-1 (PTCH1) gene. Two out of three deletions could not be detected by a conventional chromosomal analysis. A submicroscopic deletion as small as 165 kb was detected affecting only PTCH1, whereas the other two deletions were much larger (5 and 11 Mb). We demonstrated not only the exact number of genes involved in the deletion but also rapidly determined the junction sequences after pinpointing the breakpoint regions in all individuals analyzed. This report of an array-based determination of junction sequences of long deletions circumvented a labor-intensive analysis such as Southern blotting or FISH. Alu-mediated recombination in one case and non-homologous end joining in the other two were probably implicated in the generation of deletions. This method will contribute to the understanding of molecular pathogenesis of gene deletions as well as rapid genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  PubMed  CAS  Google Scholar 

  • Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones KW, Wei W, Stratton MR, Futreal PA, Weber B, Shapero MH, Wooster R (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 14:287–295

    Article  PubMed  CAS  Google Scholar 

  • Boonen SE, Stahl D, Kreiborg S, Rosenberg T, Kalscheuer V, Larsen LA, Tommerup N, Brøndum-Nielsen K, Tümer Z (2005) Delineation of an interstitial 9q22 deletion in basal cell nevus syndrome. Am J Med Genet A 132:324–328

    PubMed  CAS  Google Scholar 

  • Cohen MM Jr (2003) The hedgehog signaling network. Am J Med Genet A 123:5–28

    Article  PubMed  Google Scholar 

  • Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C, Hurles ME, Carter NP, Scherer SW, Lee C (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Article  PubMed  CAS  Google Scholar 

  • Fujii K, Kohno Y, Sugita K, Nakamura M, Moroi Y, Urabe K, Furue M, Yamada M, Miyashita T (2003) Mutations in the human homologue of Drosophila patched in Japanese nevoid basal cell carcinoma syndrome patients. Hum Mutat 21:451–452

    Article  PubMed  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  PubMed  CAS  Google Scholar 

  • Haniffa MA, Leech SN, Lynch SA, Simpson NB (2004) NBCCS secondary to an interstitial chromosome 9q deletion. Clin Exp Dermatol 29:542–544

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S, Komura D, Tsuji S, Nishimura K, Yamamoto S, Panda B, Huang J, Fukayama M, Jones KW, Aburatani H (2005) Allelic dosage analysis with genotyping microarrays. Biochem Biophys Res Commun 333:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr, Scott MP (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  PubMed  CAS  Google Scholar 

  • Kimonis VE, Goldstein AM, Pastakia B, Yang ML, Kase R, DiGiovanna JJ, Bale AE, Bale SJ (1997) Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69:299–308

    Article  PubMed  CAS  Google Scholar 

  • Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Ihara S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH, Huang J, Aburatani H (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Koolen DA, Vissers LE, Pfundt R, de Leeuw N, Knight SJ, Regan R, Kooy RF, Reyniers E, Romano C, Fichera M, Schinzel A, Baumer A, Anderlid BM, Schoumans J, Knoers NV, van Kessel AG, Sistermans EA, Veltman JA, Brunner HG, de Vries BB (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38:999–1001

    Article  PubMed  CAS  Google Scholar 

  • Lindström E, Shimokawa T, Toftgård R, Zaphiropoulos PG (2006) PTCH mutations: distribution and analyses. Hum Mutat 27:215–219

    Article  PubMed  Google Scholar 

  • Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KC, Powers S, Ye KQ, Olshen A, Venkatraman E, Norton L, Wigler M (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13:2291–2305

    Article  PubMed  CAS  Google Scholar 

  • Lupski JR (2006) Genome structural variation and sporadic disease traits. Nat Genet 38:974–976

    Article  PubMed  CAS  Google Scholar 

  • Marsh A, Wicking C, Wainwright B, Chenevix-Trench G (2005) DHPLC analysis of patients with Nevoid Basal Cell Carcinoma Syndrome reveals novel PTCH missense mutations in the sterol-sensing domain. Hum Mutat 26:283

    Article  PubMed  CAS  Google Scholar 

  • Mei R, Hubbell E, Bekiranov S, Mittmann M, Christians FC, Shen MM, Lu G, Fang J, Liu WM, Ryder T, Kaplan P, Kulp D, Webster TA (2003) Probe selection for high-density oligonucleotide arrays. Proc Natl Acad Sci USA 100:11237–11242

    Article  PubMed  CAS  Google Scholar 

  • Midro AT, Panasiuk B, Tümer Z, Stankiewicz P, Silahtaroglu A, Lupski JR, Zemanova Z, Stasiewicz-Jarocka B, Hubert E, Tarasów E, Famulski W, Zadrożna-Tołwińska B, Wasilewska E, Kirchhoff M, Kalscheuer V, Michalova K, Tommerup N (2004) Interstitial deletion 9q22.32-q33.2 associated with additional familial translocation t(9;17)(q34.11;p11.2) in a patient with Gorlin-Goltz syndrome and features of Nail-Patella syndrome. Am J Med Genet A 124:179–191

    Article  PubMed  Google Scholar 

  • Nagao K, Togawa N, Fujii K, Uchikawa H, Kohno Y, Yamada M, Miyashita T (2005a) Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays. Hum Mol Genet 14:3379–3388

    Article  PubMed  CAS  Google Scholar 

  • Nagao K, Toyoda M, Takeuchi-Inoue K, Fujii K, Yamada M, Miyashita T (2005b) Identification and characterization of multiple isoforms of a murine and human tumor suppressor, patched, having distinct first exons. Genomics 85:462–471

    Article  PubMed  CAS  Google Scholar 

  • Olivieri C, Maraschio P, Caselli D, Martini C, Beluffi G, Maserati E, Danesino C (2003) Interstitial deletion of chromosome 9, int del(9)(9q22.31-q31.2), including the genes causing multiple basal cell nevus syndrome and Robinow/brachydactyly 1 syndrome. Eur J Pediatr 162:100–103

    PubMed  Google Scholar 

  • Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17

    Article  PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  • Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Yoshimoto T, Nakao T, Minagawa K, Takahashi Y, Watanabe Y, Tanabe C (2000) A nevoid basal cell carcinoma syndrome with chromosomal aberration. No To Hattatsu 32:49–55

    PubMed  CAS  Google Scholar 

  • Sharp AJ, Selzer RR, Veltman JA, Gimelli S, Gimelli G, Striano P, Coppola A, Regan R, Price SM, Knoers NV, Eis PS, Brunner HG, Hennekam RC, Knight SJ, de Vries BB, Zuffardi O, Eichler EE (2007) Characterization of a recurrent 15q24 microdeletion syndrome. Hum Mol Genet 16:567–572

    Article  PubMed  CAS  Google Scholar 

  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57

    Article  PubMed  Google Scholar 

  • Shimkets R, Gailani MR, Siu VM, Yang-Feng T, Pressman CL, Levanat S, Goldstein A, Dean M, Bale AE (1996) Molecular analysis of chromosome 9q deletions in two Gorlin syndrome patients. Am J Hum Genet 59:417–422

    PubMed  CAS  Google Scholar 

  • Urban AE, Korbel JO, Selzer R, Richmond T, Hacker A, Popescu GV, Cubells JF, Green R, Emanuel BS, Gerstein MB, Weissman SM, Snyder M (2006) High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci USA 103:4534–4539

    Article  PubMed  CAS  Google Scholar 

  • Vissers LE, Veltman JA, van Kessel AG, Brunner HG (2005) Identification of disease genes by whole genome CGH arrays. Hum Mol Genet 14 Spec No. 2:R215–R223

    Google Scholar 

  • Wicking C, Shanley S, Smyth I, Gillies S, Negus K, Graham S, Suthers G, Haites N, Edwards M, Wainwright B, Chenevix-Trench G (1997) Most germ-line mutations in the nevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am J Hum Genet 60:21–26

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mayu Yamazaki-Inoue and Hiroko Meguro for their technical support, and Kayoko Saito for preparing the manuscript. This work was supported by the Naito Foundation (T.M.), Grants for Cancer Research from the Ministry of Health, Labour and Welfare (T.M.), a Grant-in-Aid for Scientific Research and the Budget for Nuclear Research from the Ministry of Education, Culture, Sports, Science and Technology (T.M.), the Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (H.A.), Grants-in-Aid for Young Scientists, and a Grant-in-Aid for Scientific Research on Priority Areas ‘Applied Genomics’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan (S.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Miyashita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

439_2007_419_MOESM1_ESM.tif

Supplementary Fig. S1 Two-color FISH analyses using a BAC clone, RP11-163C13 (Invitrogen) (green), encompassing PTCH and an intrachromosomal control probe on 9p11-q11 (CEP9, Abbott) (red) confirmed a heterozygous 9q22.32 deletion in G5, G10 and G19 (A, B and C, respectively; arrows). Lymphoblastoid cells obtained from a healthy individual showed no evidence of deletion (D) (TIF 1.16 mb)

439_2007_419_MOESM2_ESM.tif

Supplementary Fig. S2 Junction-specific PCR. (A) Results of the agarose gel electrophoresis for junction-specific PCR analyses revealed amplification from patients but not from normal controls (Cont). Primers used are indicated at the bottom. Their sequences are listed in Table S2. Two PCR products from different primers gave identical junction sequence in each patient. (B) Junction-specific amplification was also observed in the mother of G19 (G19M). The junction sequence of G19M was revealed to be identical to that in G19. (C) Schematic representation of the position of primers used in this experiment (TIF 460 kb)

Supplementary Data, Table S1 (DOC 41 kb)

Supplementary Data, Table S2 (DOC 31 kb)

Supplementary Data, Table S3 (DOC 34.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, K., Ishikawa, S., Uchikawa, H. et al. High-density oligonucleotide array with sub-kilobase resolution reveals breakpoint information of submicroscopic deletions in nevoid basal cell carcinoma syndrome. Hum Genet 122, 459–466 (2007). https://doi.org/10.1007/s00439-007-0419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0419-y

Keywords

Navigation