Skip to main content

Advertisement

Log in

A complete genetic association scan of the 22q11 deletion region and functional evidence reveal an association between DGCR2 and schizophrenia

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Several lines of evidence have established the presence of an association between a 3-Mb deletion in chromosome 22q11 and schizophrenia. In this paper we present a complete high-density SNP scan of this segment using DNA pools, and demonstrate significant association between two distinct regions and schizophrenia in an Ashkenazi Jewish population. One of these regions contains the previously identified COMT gene. The pattern of association and linkage disequilibrium (LD) in the second region suggest that DGCR2, which encodes a putative adhesion receptor protein, is the susceptibility gene. We confirmed the association between DGCR2 and schizophrenia through individual genotyping of 1,400 subjects. In a gene expression analysis the risk allele of a coding SNP associated with schizophrenia was found to be associated with a reduced expression of DGCR2. Interestingly, the expression of DGCR2 was also found to be elevated in the dorsolateral prefrontal cortex of schizophrenic patients relative to matched controls. This increase is likely to be explained by exposure to antipsychotic drugs. To test that hypothesis, we looked at rats exposed to antipsychotic medication and found significantly elevated levels of DGCR2 transcripts. The genetic and functional evidences here reported suggest a possible role of the DGCR2 gene in the pathology of schizophrenia and also in the therapeutic effects of antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arinami T, Ohtsuki T, Takase K, Shimizu H, Yoshikawa T, Horigome H, Nakayama J, Toru M (2001) Screening for 22q11 deletions in a schizophrenia population. Schizophr Res 52:167–170

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    PubMed  CAS  Google Scholar 

  • Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ, O’Donovan MC (2003) A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 73:152–161

    Article  PubMed  CAS  Google Scholar 

  • Chen ML, Chen CH (2005) Chronic antipsychotics treatment regulates MAOA, MAOB and COMT gene expression in rat frontal cortex. J Psychiatr Res (in press)

  • Cowles CR, Hirschhorn JN, Altshuler D, Lander ES (2002) Detection of regulatory variation in mouse genes. Nat Genet 32:432–437

    Article  PubMed  CAS  Google Scholar 

  • Demczuk S, Aledo R, Zucman J, Delattre O, Desmaze C, Dauphinot L, Jalbert P, Rouleau GA, Thomas G, Aurias A (1995) Cloning of a balanced translocation breakpoint in the DiGeorge syndrome critical region and isolation of a novel potential adhesion receptor gene in its vicinity. Hum Mol Genet 4:551–558

    Article  PubMed  CAS  Google Scholar 

  • Driscoll DA, Spinner NB, Budarf ML, McDonald-McGinn DM, Zackai EH, Goldberg RB, Shprintzen RJ, Saal HM, Zonana J, Jones MC et al (1992) Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am J Med Genet 44:261–268

    Article  PubMed  CAS  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    Article  PubMed  CAS  Google Scholar 

  • Horowitz A, Shifman S, Rivlin N, Pisante A, Darvasi A (2005) A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. Schizophr Res 73:263–267

    Article  PubMed  Google Scholar 

  • Kaganovich M, Peretz A, Ritsner M, Bening Abu-Shach U, Attali B, Navon R (2004) Is the WKL1 gene associated with schizophrenia? Am J Med Genet B Neuropsychiatr Genet 125(1):31–37

    Article  Google Scholar 

  • Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, Gos A, Nestadt G, Wolyniec PS, Lasseter VK et al (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 92:7612–7616

    Article  PubMed  CAS  Google Scholar 

  • Kimber WL, Hsieh P, Hirotsune S, Yuva-Paylor L, Sutherland HF, Chen A, Ruiz-Lozano P, Hoogstraten-Miller SL, Chien KR, Paylor R, Scambler PJ, Wynshaw-Boris A (1999) Deletion of 150 kb in the minimal DiGeorge/velocardiofacial syndrome critical region in mouse. Hum Mol Genet 8:2229–2237

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ, Roos JL, Rapoport JL, Gogos JA, Karayiorgou M (2002a) Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:16859–16864

    Article  CAS  Google Scholar 

  • Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, Gogos JA, Karayiorgou M (2002b) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:3717–3722

    Article  CAS  Google Scholar 

  • Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M, Gogos JA (2004) Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36:725–731

    Article  PubMed  CAS  Google Scholar 

  • Murphy KC, Jones LA, Owen MJ (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56:940–945

    Article  PubMed  CAS  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  PubMed  CAS  Google Scholar 

  • Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed  Google Scholar 

  • Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA, Driscoll DA, McDonald-McGinn DM, Zackai EH, Budarf ML, Emanuel BS (2000) Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 9:489–501

    Article  PubMed  CAS  Google Scholar 

  • Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, Schiffer R, Kotler M, Strous RD, Swartz-Vanetik M, Knobler HY, Shinar E, Beckmann JS, Yakir B, Risch N, Zak NB, Darvasi A (2002a) A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71:1296–1302

    Article  CAS  Google Scholar 

  • Shifman S, Pisante-Shalom A, Yakir B, Darvasi A (2002b) Quantitative technologies for allele frequency estimation of SNPs in DNA pools. Mol Cell Probes 16:429–434

    Article  CAS  Google Scholar 

  • Taylor C, Wadey R, O’Donnell H, Roberts C, Mattei MG, Kimber WL, Wynshaw-Boris A, Scambler PJ (1997) Cloning and mapping of murine Dgcr2 and its homology to the Sez-12 seizure-related protein. Mamm Genome 8:371–375

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, Webster M, Knable M, Johnston N, Yolken RH (2000) The stanley foundation brain collection and neuropathology consortium. Schizophr Res 44:151–155

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11

    Google Scholar 

  • Wiehahn GJ, Bosch GP, du Preez RR, Pretorius HW, Karayiorgou M, Roos JL (2004) Assessment of the frequency of the 22q11 deletion in Afrikaner schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 129:20–22

    Article  Google Scholar 

  • Williams NM, Spurlock G, Norton N, Williams HJ, Hamshere ML, Krawczak M, Kirov G, Nikolov I, Georgieva L, Jones S, Cardno AG, O’Donovan MC, Owen MJ (2002) Mutation screening and LD mapping in the VCFS deleted region of chromosome 22q11 in schizophrenia using a novel DNA pooling approach. Mol Psychiatry 7:1092–1100

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW (2002) Allelic variation in human gene expression. Science 297:1143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank IDgene’s former employees and clinical collaborators, in particular Meira Sternfeld and Naomi Zak. We also thank Jonathan Flint and Saffron A. G. Willis-Owen for their helpful comments on the manuscript and Bening-Abu-Shach Ulli for excellent technical assistance. This study was supported in part by the Wasserman fund Tel Aviv University to Ruth Navon. Sagiv Shifman is supported by an EMBO fellowship. We would like to thank the Stanley Medical Research Institute Brain Collection, for providing tissue samples together with important data, which made this study possible. Particular thanks are to Maree Webster and her staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Darvasi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shifman, S., Levit, A., Chen, ML. et al. A complete genetic association scan of the 22q11 deletion region and functional evidence reveal an association between DGCR2 and schizophrenia. Hum Genet 120, 160–170 (2006). https://doi.org/10.1007/s00439-006-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0195-0

Keywords

Navigation