Skip to main content
Log in

Genome-wide linkage analysis of population variation in high-density lipoprotein cholesterol

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Lower plasma levels of high-density lipoprotein cholesterol (HDL-C) are associated with the metabolic syndrome (insulin resistance, obesity, hypertension) and higher cardiovascular risk. Recent association studies have suggested rare alleles responsible for very low HDL-C levels. However, for individual cardiovascular risk factors, the majority of population-attributable deaths are associated with average rather than extreme levels. Therefore, genetic factors that determine the population variation of HDL-C are particularly relevant. We undertook genome-wide and fine mapping to identify linkage to HDL-C in healthy adult nuclear families from the Victorian Family Heart Study. In 274 adult sibling pairs (average age 24 years, average plasma HDL-C 1.4 mmol/l), genome-wide mapping revealed suggestive evidence for linkage on chromosome 4 (Z score=3.5, 170 cM) and nominal evidence for linkage on chromosomes 1 (Z=2.1, 176 cM) and 6 (Z=2.6, 29 cM). Using genotypes and phenotypes from 932 subjects (233 of the sibling pairs and their parents), finer mapping of the locus on chromosome 4 strengthened our findings with a peak probability (Z score=3.9) at 169 cM. Our linkage data suggest that chromosome 4q32.3 is linked with normal population variation in HDL-C. This region coincides with previous reports of linkage to apolipoprotein AII (a major component of HDL) and encompasses the gene encoding the carboxypeptidase E, relevant to the metabolic syndrome and HDL-C. These findings are relevant for further understanding of the genetic determinants of cardiovascular risk at a population level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arya R, Duggirala R, Almasy L, Rainwater D, Mahaney M, Cole S, Dyer T, Williams K, Leach R, Hixson J, MacCluer J, O’Connell P, Stern M, Blangero J (2002) Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nat Genet 30:102–105

    Article  PubMed  CAS  Google Scholar 

  • Bahlo M, Broman K (1999) Identification and adjustment for genotyping errors in data on sibpairs when parental genotypes are unavailable (Abstract). Am J Hum Genet 65:241

    Google Scholar 

  • Boden W (2000) High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardiol 86:19L–22L

    Article  PubMed  CAS  Google Scholar 

  • Cawley N, Zhou J, Hill J, Abebe D, Romboz S, Yanik T, Rodriguiz R, Wetsel W, Loh Y (2004) The carboxypeptidase E knockout mouse exhibits endocrinological and behavioural deficits. Endocrinol 1445:5807–5819

    Article  CAS  Google Scholar 

  • Cohen J, Kiss R, Pertsemlidis A, Marcel Y, McPherson R, Hobbs H (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872

    Article  PubMed  CAS  Google Scholar 

  • Coon H, Leppert M, Eckfeldt J, Oberman A, Myers R, Peacock J, Province M, Hopkins P, Heiss G (2001) Genome-wide linkage analysis of lipids in the Hypertension Genetic Epidemiology Network (HyperGEN) Blood Pressure Study. Arterioscler Thromb Vasc Biol 21:1969–1976

    Article  PubMed  CAS  Google Scholar 

  • Dastani Z, Quiogue L, Plaisir C, Engert LC, Marcil M, Genest J, Pajukanya P (2006) Evidence for a gene influencing high-density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol 26:392–397

    Article  PubMed  CAS  Google Scholar 

  • Ellison RC, Zhang Y, Qureshi MM, Knox S, Arnett DK, Province MA (2004) Lifestyle determinants of high-density lipoprotein cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J 147:529–535

    Article  PubMed  CAS  Google Scholar 

  • Fricker L, Synder S (1983) Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase. J Biol Chem 258:10950–10955

    PubMed  CAS  Google Scholar 

  • Gordon D, Probstfield J, Garrison R, Neaton J, Castelli W, Knoke J, Jacobs D Jr, Bangdiwala S, Tyroler H (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8–15

    PubMed  CAS  Google Scholar 

  • Harrap S, Stebbing M, Hopper J, Hoang H, Giles G (2000) Familial patterns of covariation for cardiovascular risk factors in adults—The Victorian Family Heart Study. Am J Epidemiol 152:704–715

    Article  PubMed  CAS  Google Scholar 

  • Harrap S, Wong Z, Stebbing M, Lamantia A, Bahlo M (2002) Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypes. Physiol Genomics 8:99–105

    PubMed  CAS  Google Scholar 

  • Hook V, Loh Y (1984) Carboxypeptidase B-like converting enzyme activity in secretory granules of the rat pituitary. Proc Natl Acad Sci USA 81:2776–2780

    Article  PubMed  CAS  Google Scholar 

  • Imperatore G, Knowler W, Pettitt D, Kobes S, Fuller J, Bennett P, Hanson R (2000) A locus influencing total serum cholesterol on chromosome 19p: results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler Thromb Vasc Biol 20:2651–2656

    PubMed  CAS  Google Scholar 

  • Klos K, Kardia SL, Ferrell RE, Turner ST, Boerwinkle E, Sing CF (2001) Genome-wide linkage analysis reveals evidence of multiple regions that influence variation in plasma lipid and apolipoprotein levels associated with risk of coronary heart disease. Arterioscler Thromb Vasc Biol 21:971–978

    PubMed  CAS  Google Scholar 

  • Kruglyak L, Lander E (1995) Complete multipoint sib pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454

    PubMed  CAS  Google Scholar 

  • Kruglyak L, Daly M, Reeve-Daly M, Lander E (1996) Parametric and nonparametric linkage analyses: a unified approach. Am J Hum Genet 58:1347–1363

    PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lewis G, Rader D (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96:1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Lander E (1992) Systematic detection of errors in genetic linkage analysis. Genomics 14:604–610

    Article  PubMed  CAS  Google Scholar 

  • Mahaney M, Almasy L, Rainwater D, VandeBerg J, Cole S, Hixson J, Blangero J, MacCluer J (2003) A quantitative trait locus on chromosome 16q influences variation in plasma HDL-C levels in Mexican Americans. Arterioscler Thromb Vasc Biol 23:339–345

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Rhyne J, Hamlette S, Birnbaum J, Rodriguez A (2003) Genetics of HDL regulation in humans. Curr Opin Lipidol 14:273–279

    Article  PubMed  CAS  Google Scholar 

  • Naggert J, Fricker L, Varlamov O, Nishina P, Rouille Y, Steiner D, Carroll R, Paigen B, Leiter E (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142

    Article  PubMed  CAS  Google Scholar 

  • Ng MCY, So W-Y, Lam VKL, Cockram CS, Bell GI, Cox NJ, Chan JCN (2004) Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes 53:2676–2683

    Article  PubMed  CAS  Google Scholar 

  • Pajukanta P, Allayee H, Krass K, Kuraishy A, Soro A, Lilja H, Mar R, Taskinen M, Nuotio I, Laakso M, Rotter J, de Bruin T, Cantor R, Lusis A, Peltonen L (2003) Combined analysis of genome scans of Dutch and Finnish families reveals a susceptibility locus for high-density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet 72:903–917

    Article  PubMed  CAS  Google Scholar 

  • Peacock J, Arnett D, Atwood L, Myers R, Coon H, Rich S, Province M, Heiss G (2001) Genome scan for quantitative trait loci linked to high-density lipoprotein cholesterol: the NHLBI Family Heart Study. Arterioscler Thromb Vasc Biol 21:1823–1828

    Article  PubMed  CAS  Google Scholar 

  • Reed D, Nanthakumar E, North M, Bell C, Price R (2001) A genome-wide scan suggests a locus on chromosome 1q21-q23 contributes to normal variation in plasma cholesterol concentration. J Mol Med 79:262–269

    Article  PubMed  CAS  Google Scholar 

  • Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS (1999) Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 65:876–884

    Article  PubMed  CAS  Google Scholar 

  • Rose G (1981) Strategy of prevention: lessons from cardiovascular disease. Br Med J 282:1847–1851

    Article  CAS  Google Scholar 

  • Sonnenberg G, Krakower G, Martin L, Olivier M, Kwitek A, Comuzzie A, Blangero J, Kissebah A (2004) Genetic determinants of obesity-related lipid traits. J Lipid Res 45:610–615

    Article  PubMed  CAS  Google Scholar 

  • Soro A, Pajukanta P, Lilja H, Ylitalo K, Hiekkalinna T, Perola M, Cantor R, Viikari J, Taskinen M-R, Peltonen L (2002) Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23, 16q24.1-24.2, and 20q13.11 in Finnish families. Am J Hum Genet 70:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Wilson P, Abbott R, Castelli W (1988) High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis 8:737–741

    PubMed  CAS  Google Scholar 

  • Yang Q, Lai C-Q, Parnell L, Cupples L, Adiconis X, Zhu Y, Wilson P, Housman D, Shearman A, D’Agostino R, Ordovas J (2005) Genome-wide linkage analyses and candidate gene fine mapping for HDL3 cholesterol: the Framingham Study. J Lipid Res 46:1416–1425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Australian Genome Research Facility for genotyping analyses for the genome scan and Margaret Stebbing for her contribution to the Victorian Family Heart Study. This work was supported by the National Health Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Harrap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrap, S.B., Wong, Z.Y.H., Scurrah, K.J. et al. Genome-wide linkage analysis of population variation in high-density lipoprotein cholesterol. Hum Genet 119, 541–546 (2006). https://doi.org/10.1007/s00439-006-0167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0167-4

Keywords

Navigation