Skip to main content

Advertisement

Log in

A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 22 October 2005

Abstract

Background: Prostate cancer (PRCA) is the most common cancer in males in the western world. In Finland PRCA has an age-adjusted incidence of 81.5 per 100,000. We previously reported that in Finland, the late-onset cases in families with “no-male-to-male” (NMM) transmission of PRCA accounted for most of the linkage to the HPCX region (Xq27-28). The aim of the present study was to test for linkage disequilibrium (LD) and haplotype-sharing around marker DXS1205 between cases from hereditary prostate cancer (HPC) families and population controls. The initial allelic association was performed between 108 PRCA cases and 257 population controls genotyped for 23 markers in the Xq26-28 region. This resulted in a highly significant nominal one-sided Fisher’s exact P-value of 0.0003 for allele ″180″ of marker DXS1205. Subsequently, a similar level of significance was observed for the same allele for marker DXS1205 (P=0.0002) when comparing 60 NMM cases and 257 controls. These results were still significant after Bonferroni correction for multiple testing. Fine mapping efforts included the genotyping of four additional markers D3S2390, bG82i1.9, bG82i1.1, bG82i1.0 and four single nucleotide polymorphisms (SNPs) to augment the original markers around DXS1205. Results: Our major finding is that markers extending from ″D3S2390″ to ″bG82i1.0″ flank the critical locus, about 150 kb. Levin and Bertell’s LD measure (δ), a guide to localization of a possible variant, was 0.42 and 0.41 for alleles of markers bG82i1.9 and DXS1205, respectively. Conclusions: In this study, the most significant haplotype comprised the three tightly linked, contiguous markers: ″cen-bG82i1.9-SNP-Hap B-bG82i1.1-tel″ [″197-2-234″] among several possible haplotypes (nominal Fisher’s one-sided P=0.003). The two transcription units mapping within this interval are the LDOC1 and SPANXC genes. Positional cloning of the HPCX gene(s) is being facilitated by this exploration of the Xq26-28 region. This study represents the first report identifying a haplotype in the Xq27-28 region for an association between HPCX and X-linked prostate cancer with no-male-to-male transmission in the Finnish population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bergthorsson JT, Johannesdottir G, Arason A, Benediktsdottir KR, Agnarsson BA, Bailey-Wilson JE, Gillanders E, Smith J, Trent J, Barkardottir RB (2000) Analysis of HPC1, HPCX, and PCaP in Icelandic hereditary prostate cancer. Hum Genet 107:372–375

    Article  CAS  PubMed  Google Scholar 

  • Bochum S, Paiss T, Vogel W, Herkommer K, Hautmann R, Haeussler J (2002) Confirmation of the prostate cancer susceptibility locus HPCX in a set of 104 German prostate cancer families. Prostate 52:12–19

    Article  CAS  PubMed  Google Scholar 

  • Botstein DaR N (2003) Discovering genotypes underlying human phenotypes: past success for mendelian disease, future approaches for complex disease. Nat Genet 33:228–244

    Article  PubMed  Google Scholar 

  • Cancel-Tassin G, Latil A, Valeri A, Mangin P, Fournier G, Berthon P, Cussenot O (2001) PCAP is the major known prostate cancer predisposing locus in families from south and west Europe. Eur J Hum Genet 9:135–142

    CAS  PubMed  Google Scholar 

  • Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, Hu P, Bujnovszky P, Makalowska I, Baffoe-Bonnie A, Faith D, Smith J, Stephan D, Wiley K, Brownstein M, Gildea D, Kelly B, Jenkins R, Hostetter G, Matikainen M, Schleutker J, Klinger K, Connors T, Xiang Y, Wang Z, De Marzo A, Papadopoulos N, Kallioniemi OP, Burk R, Meyers D, Gronberg H, Meltzer P, Silverman R, Bailey-Wilson J, Walsh P, Isaacs W, Trent J (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181–184

    Article  CAS  PubMed  Google Scholar 

  • Collins A, Morton NE (1998) Mapping a disease locus by allelic association. Proc Natl Acad Sci USA 95:1741–1745

    Article  CAS  PubMed  Google Scholar 

  • Collins A, Ennis S, Taillon-Miller P, Kwok PY, Morton NE (2001) Allelic association with SNPs: metrics, populations, and the linkage disequilibrium map. Hum Mutat 17:255–262

    Article  CAS  PubMed  Google Scholar 

  • Cussenot O, Valeri A (2001) Heterogeneity in genetic susceptibility to prostate cancer. Eur J Intern Med 12(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322

    Article  CAS  PubMed  Google Scholar 

  • Easton DF, Schaid DJ, Whittemore AS, Isaacs WJ (2003) Where are the prostate cancer genes? A summary of eight genome wide searches. Prostate 57:261–269

    Article  CAS  PubMed  Google Scholar 

  • Farnham JM, Camp NJ, Swensen J, Tavtigian SV, Albright LA (2004) Confirmation of the HPCX prostate cancer predisposition locus in large Utah prostate cancer pedigrees. Hum Genet 116(3):179–185

    Article  PubMed  Google Scholar 

  • Finland (2000) Cancer statistics 2000 of the Finnish national research and development centre for welfare and health. Cancer society of Finland Publication

  • Goode EL, Stanford JL, Peters MA, Janer M, Gibbs M, Kolb S, Badzioch MD, Hood L, Ostrander EA, Jarvik GP (2001) Clinical characteristics of prostate cancer in an analysis of linkage to four putative susceptibility loci. Clin Cancer Res 7:2739–2749

    CAS  PubMed  Google Scholar 

  • Hoglund P, Sistonen P, Norio R, Holmberg C, Dimberg A, Gustavson KH, de la Chapelle A, Kere J (1995) Fine mapping of the congenital chloride diarrhea gene by linkage disequilibrium. Am J Hum Genet 57:95–102

    CAS  PubMed  Google Scholar 

  • Hovatta I, Terwilliger JD, Lichtermann D, Makikyro T, Suvisaari J, Peltonen L, Lonnqvist J (1997) Schizophrenia in the genetic isolate of Finland. Am J Med Genet 74:353–360

    Article  CAS  PubMed  Google Scholar 

  • Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, Juvonen H, Kokko-Sahin ML, Vaisanen L, Mannila H, Lonnqvist J, Peltonen L (1999) A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 65:1114–1124

    Article  CAS  PubMed  Google Scholar 

  • Laitinen T, Kauppi P, Ignatius J, Ruotsalainen T, Daly MJ, Kaariainen H, Kruglyak L, Laitinen H, de la Chapelle A, Lander ES, Laitinen LA, Kere J (1997) Genetic control of serum IgE levels and asthma: linkage and linkage disequilibrium studies in an isolated population. Hum Mol Genet 6:2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Lange EM, Chen H, Brierley K, Perrone EE, Bock CH, Gillanders E, Ray ME, Cooney KA (1999) Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin Cancer Res 5:4013–4020

    CAS  PubMed  Google Scholar 

  • Matikaine MP, Pukkala E, Schleutker J, Tammela TL, Koivisto P, Sankila R, Kallioniemi OP (2001) Relatives of prostate cancer patients have an increased risk of prostate and stomach cancers: a population-based, cancer registry study in Finland. Cancer Causes Control 12:223–230

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki K, Manabe T, Hanzawa H, Maass N, Tsukada T, Yamaguchi K(1999) Identification of a novel gene, LDOC1, down-regulated in cancer cell lines. Cancer Lett 140:227–234

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki K, Schem C, von Kaisenberg C, Biallek M, Rosel F, Jonat W, Maass N (2003) Leucine-zipper protein, LDOC1, inhibits NF-kappaB activation and sensitizes pancreatic cancer cells to apoptosis. Int J Cancer 105:454–458

    Article  CAS  PubMed  Google Scholar 

  • Pajukanta P, Terwilliger JD, Perola M, Hiekkalinna T, Nuotio I, Ellonen P, Parkkonen M, Hartiala J, Ylitalo K, Pihlajamaki J, Porkka K, Laakso M, Viikari J, Ehnholm C, Taskinen MR, Peltonen L (1999) Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am J Hum Genet 64:1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Peltonen L (2000) Positional cloning of disease genes: advantages of genetic isolates. Hum Hered 50:66–75

    Article  CAS  PubMed  Google Scholar 

  • Peltonen L, Jalanko A, Varilo T (1999) Molecular genetics of the Finnish disease heritage. Hum Mol Genet 8:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Peters MA, Jarvik GP, Janer M, Chakrabarti L, Kolb S, Goode EL, Gibbs M, DuBois CC, Schuster EF, Hood L, Ostrander EA, Stanford JL (2001) Genetic linkage analysis of prostate cancer families to Xq27-28. Hum Hered 51:107–113

    Article  CAS  PubMed  Google Scholar 

  • Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL, Wein AJ, Malkowicz SB (2000) Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 67:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Rökman A, Ikonen T, Mononen N, Autio V, Matikainen MP, Koivisto PA, Tammela TL, Kallioniemi OP, Schleutker J (2001) ELAC2/HPC2 involvement in hereditary and sporadic prostate cancer. Cancer Res 61:6038–6041

    PubMed  Google Scholar 

  • Rökman A, Ikonen T, Seppala EH, Nupponen N, Autio V, Mononen N, Bailey-Wilson J, Trent J, Carpten J, Matikainen MP, Koivisto PA, Tammela TL, Kallioniemi OP, Schleutker J (2002) Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70:1299–1304

    Article  PubMed  Google Scholar 

  • Schaid D (2004) The complex genetic epidemiology of prostate cancer. Hum Mol Genet 13(1):R103–R121

    Article  CAS  PubMed  Google Scholar 

  • Schleutker J, Matikainen M, Smith J, Koivisto P, Baffoe-Bonnie A, Kainu T, Gillanders E, Sankila R, Pukkala E, Carpten J, Stephan D, Tammela T, Brownstein M, Bailey-Wilson J, Trent J, Kallioniemi OP (2000) A genetic epidemiological study of hereditary prostate cancer (HPC) in Finland: frequent HPCX linkage in families with late-onset disease. Clin Cancer Res 6:4810–4815

    CAS  PubMed  Google Scholar 

  • Schleutker J, Baffoe-Bonnie AB, Gillanders E, Kainu T, Jones MP, Freas-Lutz D, Markey C, Gildea D, Riedesel E, Albertus J, Gibbs KD Jr, Matikainen M, Koivisto PA, Tammela T, Bailey-Wilson JE, Trent JM, Kallioniemi OP (2003) Genome-wide scan for linkage in finnish hereditary prostate cancer (HPC) families identifies novel susceptibility loci at 11q14 and 3p25-26. Prostate 57:280–289

    Article  CAS  PubMed  Google Scholar 

  • Seppälä EH, Ikonen T, Autio V, Rokman A, Mononen N, Matikainen MP, Tammela TL, Schleutker J (2003) Germ-line alterations in MSR1 gene and prostate cancer risk. Clin Cancer Res 9:5252–5256

    PubMed  Google Scholar 

  • Shibata A, Whittemore AS (1997) Genetic predisposition to prostate cancer: possible explanations for ethnic differences in risk. Prostate 32:65–72

    Article  CAS  PubMed  Google Scholar 

  • Smith JR, Freije D, Carpten JD, Grönberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P, Nusskern DR, Damber JE, Bergh A, Emanuelsson M, Kallioniemi O-P, Walker-Daniels J, Bailey-Wilson JE, Beaty TH, Meyers DA, Walsh PC, Collins FS, Trent JM, Isaacs WB (1996) Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274:1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Stephan DA, Howell GR, Teslovich TM, Coffey AJ, Smith L, Bailey-Wilson JE, Malechek L, Gildea D, Smith JR, Gillanders EM, Schleutker J, Hu P, Steingruber HE, Dhami P, Robbins CM, Makalowska I, Carpten JD, Sood R, Mumm S, Reinbold R, Bonner TI, Baffoe-Bonnie A, Bubendorf L, Heiskanen M, Kallioneimi OP, Baxevanis AD, Joseph SS, Zucchi I, Burk RD, Isaacs W, Ross MT, Trent JM (2002) Physical and transcript map of the hereditary prostate cancer region at Xq27. Genomics 79:41–50

    Article  CAS  PubMed  Google Scholar 

  • Syvänen A (1998) Solid-phase minisequencing as a tool to detect DNA polymorphism. Methods Mol Biol 98:291–298

    PubMed  Google Scholar 

  • Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, Camp NJ, Carillo AR, Chen Y, Dayananth P, Desrochers M, Dumont M, Farnham JM, Frank D, Frye C, Ghaffari S, Gupte JS, Hu R, Iliev D, Janecki T, Kort EN, Laity KE, Leavitt A, Leblanc G, McArthur-Morrison J, Pederson A, Penn B, Peterson KT, Reid JE, Richards S, Schroeder M, Smith R, Snyder SC, Swedlund B, Swensen J, Thomas A, Tranchant M, Woodland AM, Labrie F, Skolnick MH, Neuhausen S, Rommens J, Cannon-Albright LA (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS, Walsh P, Isaacs W, Schleutker J, Matikainen M, Tammela T, Visakorpi T, Kallioniemi OP, Berry R, Schaid D, French A, McDonnell S, Schroeder J, Blute M, Thibodeau S, Gronberg H, Emmanuelsson M, Damber J-E, Bergh A, Bjorn-Anders J, Smith J, Bailey-Wilson J, Carpten J, Stephan D, Gillander E, Amundson I, Kainu T, Freas-Lutz D, Baffoe-Bonnie A, Van Aucken A, Sood R, Collins F, Brownstein M, Trent J (1998a) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20:175–179

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS, Walsh P, Isaacs W, Schleutker J, Matikainen M, Tammela T, Visakorpi T, Kallioniemi OP, Berry R, Schaid D, French A, McDonnell S, Schroeder J, Blute M, Thibodeau S, Trent J et al. (1998b) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20: 175–179

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D, Lange EM, Hawkins GA, Turner A, Ewing CM, Faith DA, Johnson JR, Suzuki H, Bujnovszky P, Wiley KE, DeMarzo AM, Bova GS, Chang B, Hall MC, McCullough DL, Partin AW, Kassabian VS, Carpten JD, Bailey-Wilson JE, Trent JM, Ohar J, Bleecker ER, Walsh PC, Isaacs WB, Meyers DA (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32:321–325

    Article  CAS  PubMed  Google Scholar 

  • Zendman A, Zschocke J, van Kraats AA, de Wit NJ, Kurpisz M, Weidle UH, Ruiter DJ, Weiss EH, GN vM (2003) The human SPANX multigene family: genomic organization, alignment and expression in male germ cells and tumor cell lines. Gene 309:125–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work has greatly benefited from discussions with and comments from Dr. Alfred Knudson (Fox Chase Cancer Center) and Dr. Neil Risch (Stanford School of Medicine). The authors acknowledge Mark Ross of the Sanger Institute for his help with aligning the markers in the Xq27-28 region. We thank Ms. Pia Johnson of the Fox Chase Cancer Center for secretarial assistance. This study was supported in part by the Medical Research Fund of the Tampere University Hospital, the Reino Lahtikari Foundation, the Finnish Cancer Organizations, the Sigrid Juselius Foundation and the Academy of Finland, the National Human Genome Research Institute, National Institutes of Health, Contract Number N01-HG-55389, the Translational Genomics Research Institute, and by the Howard Hughes Medical Institute (HHMI) Undergraduate Training Award through the Fox Chase Cancer Center to S.D.S. A.B.B-B and A.B. also received support from USPHS grant CA-06927 and an appropriation from the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan E. Bailey-Wilson.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00439-005-0050-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baffoe-Bonnie, A.B., Smith, J.R., Stephan, D.A. et al. A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region. Hum Genet 117, 307–316 (2005). https://doi.org/10.1007/s00439-005-1306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-1306-z

Keywords

Navigation