Skip to main content

Advertisement

Log in

An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3′ haplotypes could modify circulating levels of mannose-binding lectin

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Mannose-binding protein (MBL) is a critical component of innate immunity and provides first-line protection against pathogens. Both circulating MBL serum levels and functional activity have been correlated with common genetic variants in the MBL2 gene. Associations between MBL deficiency and severe infections have been reported in immuno-incompetent patients and for autoimmune disorders; however, measured MBL serum levels do not fully correlate with the ‘secretor haplotypes’. Previously, the MBL2 locus was resequenced and determined that a recombination hotspot divides MBL2 into two haplotype blocks. It was sought to investigate whether additional variants, in either block structure could associate with MBL serum levels. Therefore, 31 common variants were analysed across the locus in 212 DNA samples of healthy Caucasian individuals with known MBL serum concentrations. The additional 5′ variants were in strong linkage to the elements of the ‘secretor haplotypes’; functional alleles B, C and D also lie on restricted haplotypes. Four variants in the 3′ block (Ex4-1483T>C, Ex4-1067G>A, Ex4-901G>A and Ex4-710G>A) are components of a distinct haplotype block. The results of this study suggest that additional 5′ variants as well as markers of distinct 3′ haplotype blocks in MBL2 may contribute to circulating protein levels, but further studies are required to confirm these observations. Last, there could be a selective advantage for diversification of the 3′ region of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett JC, Fry B, Maller J, Daly MJ (2004) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  Google Scholar 

  • Bernig T, Taylor JG, Foster CB, Staats B, Yeager M, Chanock SJ (2004) Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun 5:461–476

    Article  PubMed  CAS  Google Scholar 

  • Besag J, Clifford P (1991) Sequential Monte Carlo p-values. Biometrika 78:301–304

    Google Scholar 

  • Biezeveld MH, Kuipers IM, Geissler J, Lam J, Ottenkamp JJ, Hack CE, Kuijpers TW (2003) Association of mannose-binding lectin genotype with cardiovascular abnormalities in Kawasaki disease. Lancet 361:1268–1270

    Article  PubMed  CAS  Google Scholar 

  • Bray N, Dubchak I, Pachter L (2003) AVID: a global alignment program. Genome Res 13:97–102

    Article  PubMed  CAS  Google Scholar 

  • Chanock S, Taylor JG (2002) Using genetic variation to study immunomodulation. Curr Opin Pharmacol 2:463–469

    Article  PubMed  CAS  Google Scholar 

  • Chapman JM, Cooper JD, Todd JA, Clayton DG (2003) Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum Hered 56:18–31

    Article  PubMed  Google Scholar 

  • Clark AG (2004) The role of haplotypes in candidate gene studies. Genet Epidemiol 27:321–333

    Article  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Crawford DC, Bhangale T, Li N, Hellenthal G, Rieder MJ, Nickerson DA, Stephens M (2004) Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet 36:700–706

    Article  PubMed  CAS  Google Scholar 

  • Crosdale DJ, Ollier WE, Thomson W, Dyer PA, Jensenious J, Johnson RW, Poulton KV (2000) Mannose binding lectin (MBL) genotype distributions with relation to serum levels in UK Caucasoids. Eur J Immunogenet 27:111–117

    Article  PubMed  CAS  Google Scholar 

  • Dubchak I, Brudno M, Loots GG, Pachter L, Mayor C, Rubin EM, Frazer KA (2000) Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 10:1304–1306

    Article  PubMed  CAS  Google Scholar 

  • Dunnen Jd, Antonarakis S (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124

    Article  Google Scholar 

  • Eisen DP, Minchinton RM (2003) Impact of mannose-binding lectin on susceptibility to Infectious Diseases. Clin Infect Dis 37:1496–1505

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Garred P, Larsen F, Madsen HO, Koch C (2003) Mannose-binding lectin deficiency—revisited. Mol Immunol 40:73–84

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I (1987) Serum lectin with known structure activates complement through the classical pathway. J Biol Chem 262:7451–7454

    PubMed  CAS  Google Scholar 

  • Jack DL, Turner MW (2003) Anti-microbial activities of mannose-binding lectin. Biochem Soc Trans 31:753–757

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick DC (2002) Mannan-binding lectin: clinical significance and applications. Biochim Biophys Acta 1572:401–413

    PubMed  CAS  Google Scholar 

  • Kuhlman M, Joiner K, Ezekowitz RA (1989) The human mannose-binding protein functions as an opsonin. J Exp Med 169:1733–1745

    Article  PubMed  CAS  Google Scholar 

  • Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ (2003) Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered 55:56–65

    Article  PubMed  CAS  Google Scholar 

  • Larsen F, Madsen HO, Sim RB, Koch C, Garred P (2004) Disease-associated mutations in human mannose-binding lectin compromise oligomerisation and activity of the final protein. J Biol Chem 279: 21302–21311

    Article  PubMed  CAS  Google Scholar 

  • Lipscombe RJ, Sumiya M, Hill AV, Lau YL, Levinsky RJ, Summerfield JA, Turner MW (1992) High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet 1:709–715

    Article  PubMed  CAS  Google Scholar 

  • Madsen HO, Garred P, Kurtzhals JA, Lamm LU, Ryder LP, Thiel S, Svejgaard A (1994) A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, Svejgaard A (1995) Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 155:3013–3020

    PubMed  CAS  Google Scholar 

  • Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P (1998) Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol 161:3169–3175

    PubMed  CAS  Google Scholar 

  • Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046–1047

    Article  PubMed  CAS  Google Scholar 

  • Minchinton RM, Dean MM, Clark TR, Heatley S, Mullighan CG (2002) Analysis of the relationship between mannose-binding lectin (MBL) genotype, MBL levels and function in an Australian blood donor population. Scand J Immunol 56:630–641

    Article  PubMed  CAS  Google Scholar 

  • Morris RW, Kaplan NL (2002) On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol 23:221–233

    Article  PubMed  Google Scholar 

  • Naito H, Ikeda A, Hasegawa K, Oka S, Uemura K, Kawasaki N, Kawasaki T (1999a) Characterization of human serum mannan-binding protein promoter. J Biochem (Tokyo) 126:1004–1012

    CAS  Google Scholar 

  • Naito H, Ma Y, Uemura K, Arano Y, Kawasaki T (1999b) Metabolic properties of normal and mutant mannan-binding proteins in mouse plasma. Biochem Biophys Res Commun 256:231–234

    Article  PubMed  CAS  Google Scholar 

  • Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70:157–169

    Article  PubMed  CAS  Google Scholar 

  • Packer BR, Yeager M, Staats B, Welch R, Crenshaw A, Kiley M, Eckert A, Beerman M, Miller E, Bergen A, Rothman N, Strausberg R, Chanock SJ (2004) SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res 32:D528-D532

    Article  PubMed  CAS  Google Scholar 

  • Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA, Studebaker JF, Ankener WM, Alfisi SV, Kuo FS, Camisa AL, Pazorov V, Scott KE, Carey BJ, Faith J, Katari G, Bhatti HA, Cyr JM, Derohannessian V, Elosua C, Forman AM, Grecco NM, Hock CR, Kuebler JM, Lathrop JA, Mockler MA, Nachtman EP, Restine SL, Varde SA, Hozza MJ, Gelfand CA, Broxholme J, Abecasis GR, Boyce-Jacino MT, Cardon LR (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 33:382–387

    Article  PubMed  CAS  Google Scholar 

  • Rozen, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed  Google Scholar 

  • Soborg C, Madsen HO, Andersen AB, Lillebaek T, Kok-Jensen A, Garred P (2003) Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 188:777–782

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF (2001a) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001b) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Pike MC (2003a) Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the multiethnic cohort study. Hum Hered 55:27–36

    Article  PubMed  Google Scholar 

  • Stram DO, Leigh PC, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE, Thomas DC (2003b) Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered 55:179–190

    Article  PubMed  Google Scholar 

  • Sumiya M, Super M, Tabona P, Levinsky RJ, Arai T, Turner MW, Summerfield JA (1991) Molecular basis of opsonic defect in immunodeficient children. Lancet 337:1569–1570

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Gordon J, Liu H, Sastry KN, Epstein JE, Motwani M, Laursen I, Thiel S, Jensenius JC, Carroll M, Ezekowitz RA (2002) Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes Infect 4:773–784

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  • Terai I, Kobayashi K, Fujita T, Hagiwara K (1993) Human serum mannose binding protein (MBP): development of an enzyme-linked immunosorbent assay (ELISA) and determination of levels in serum from 1085 normal Japanese and in some body fluids. Biochem Med Metab Biol 50:111–119

    Article  PubMed  CAS  Google Scholar 

  • Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U, Reid KB, Jensenius JC (1997) A second serine protease associated with mannan-binding lectin that activates complement. Nature 386:506–510

    Article  PubMed  CAS  Google Scholar 

  • Wall JD, Pritchard JK (2003) Assessing the performance of the haplotype block model of linkage disequilibrium. Am J Hum Genet 73:502–515

    Article  PubMed  CAS  Google Scholar 

  • Wallis R (2002) Structural and functional aspects of complement activation by mannose-binding protein. Immunobiology 205:433–445

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1996) Disequilibrium. In: Genetic daya analysis II: methods for discrete population genetic data. Sinaur Associates, Sunderland, pp 91–139

Download references

Acknowledgments

The authors are grateful to S. Berndt for her helpful assistance in the computation of the haplotype association tests. We thank E. Tarazona-Santos, M. Yeager, B. Staats, B. Packer, S. Savage, J.G. Taylor VI. and H.C. Erickson for discussion of the data; M. Kiley, E. Schatzkin, M. Brown, A. Eckert, A. Crenshaw and D. Kressley for their excellent technical assistance. We also want to thank the two anonymous reviewers for their critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Chanock.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernig, T., Breunis, W., Brouwer, N. et al. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3′ haplotypes could modify circulating levels of mannose-binding lectin. Hum Genet 118, 404–415 (2005). https://doi.org/10.1007/s00439-005-0053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0053-5

Keywords

Navigation