Skip to main content
Log in

Insights into the mutational history and prevalence of SCA1 in the Indian population through anchored polymorphisms

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

There is a wide variation in prevalence of spinocerebellar ataxia type 1 (SCA1) in different populations. In the present study, we observed SCA1 in ∼22% (37/167 families) of the autosomal dominant cerebellar ataxias (ADCAs) in the Indian population. We investigated the role of various genetic factors like repeat length, interruption pattern and chromosomal background in predisposing the repeats to instability in these families. We analyzed 12 markers (9 SNPs and 3 microsatellite markers) and found 3 of them, spanning a region of ∼65 kbp to be linked with the disease locus in the Indian population. The haplotype C-4-C defined by rs1476464 (SNP9)-D6S288-rs2075974 (SNP1), which was extremely rare in nonaffected chromosomes (∼3%), was observed to be significantly (P<0.0000) associated with the expanded chromosomes in ∼44% of SCA1 families. This haplotype was found in all nonhuman primates. SNP1 (C/T), which showed a skewed allelic distribution between large (LN > 30 repeats) and small normal (SN ≤ 30 repeats) alleles (P<0.0000) had similar allelic distribution (P=0.3477) in LN and expanded alleles. Our study suggested that LN and expanded chromosomes linked with the ancestral C allele of SNP1 might have originated simultaneously during evolution by the lengthening of repeats. The LN alleles might have accumulated repeat stabilizing non-CAG interruptions during this process. Similar proportions of T allele in SN with single interruptions, LN and expanded chromosomes lend credence to the origin of expanded alleles from singly-interrupted chromosomes. Our analyses using markers linked (anchoring) to SCA1 suggest that prevalence of SCA1 is correlated to both repeat length and number of interruptions in the Indian population. The spectrum of these alleles also points toward the antiquity of SCA1 mutation in the Indian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basu P, Chattopadhyay B, Gangopadhaya PK, Mukherjee SC, Sinha KK, Das SK, Roychoudhury S, Majumder PP, Bhattacharyya NP (2000) Analysis of CAG repeats in SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci in spinocerebellar ataxia patients and distribution of CAG repeats at the SCA1, SCA2 and SCA6 loci in nine ethnic populations of eastern India. Hum Genet 106:597–604

    Article  PubMed  CAS  Google Scholar 

  • Brahmachari SK, Meera G, Sarkar PS, Balagurumoorthy P, Tripathi J, Raghavan S, Shaligram U, Pataskar S (1995) Simple repetitive sequences in the genome: structure and functional significance. Electrophoresis 16:1705–1714

    Article  PubMed  CAS  Google Scholar 

  • Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 61:727–733

    Article  PubMed  Google Scholar 

  • Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, Heckmann J, Ramesar R, Greenberg J (2003) The hereditary adult-onset ataxias in South Africa. J Neurol Sci 216:47–54

    Article  PubMed  Google Scholar 

  • Chiurazzi P, Genuardi M, Kozak L, Giovannucci-Uzielli ML, Bussani C, Dagna-Bricarelli F, Grasso M, Perroni L, Sebastio G, Sperandeo MP, Oostra BA, Neri G (1996) Fragile X founder chromosomes in Italy: a few initial events and possible explanation for their heterogeneity. Am J Med Genet 64:209–215

    Article  PubMed  CAS  Google Scholar 

  • Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK (2001) CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet 10:2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254–248

    Article  PubMed  CAS  Google Scholar 

  • Cleary JD, Pearson CE (2003) The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res 100:25–55

    Article  PubMed  CAS  Google Scholar 

  • Crawford DC, Wilson B, Sherman SL (2000) Factors involved in the initial mutation of the fragile X CGG repeat as determined by sperm small pool PCR. Hum Mol Genet 9:2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, Richards CS, Ward PA, Nelson DL (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8:88–94

    Article  PubMed  CAS  Google Scholar 

  • Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540

    Article  PubMed  CAS  Google Scholar 

  • Gunter C, Paradee W, Crawford DC, Meadows KA, Newman J, Kunst CB, Nelson DL, Schwartz C, Murray A, Macpherson JN, Sherman SL, Warren ST (1998) Re-examination of factors associated with expansion of CGG repeats using a single nucleotide polymorphism in FMR1. Hum Mol Genet 7:1935–1946

    Article  PubMed  CAS  Google Scholar 

  • Illarioshkin SN, Slominsky PA, Ovchinnikov IV, Markova ED, Miklina NI, Klyushnikov SA, Shadrina M, Vereshchagin NV, Limborskaya SA, Ivanova-Smolenskaya IA (1996) Spinocerebellar ataxia type 1 in Russia. J Neurol 243:506–510

    Article  PubMed  CAS  Google Scholar 

  • Jodice C, Frontali M, Persichetti F, Novelletto A, Pandolfo M, Spadaro M, Giunti P, Schinaia G, Lulli P, Malaspina P et al (1993) The gene for spinal cerebellar ataxia 1 (SCA1) is flanked by two closely linked highly polymorphic microsatellite loci. Hum Mol Genet 2:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Lee WY, Jin DK, Oh MR, Lee JE, Song SM, Lee EA, Kim GM, Chung JS, Lee KH (2003) Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol 60:858–863

    Article  PubMed  Google Scholar 

  • Limprasert P, Nouri N, Nopparatana C, Deininger PL, Keats BJ (1997) Comparative studies of the CAG repeats in the spinocerebellar ataxia type 1 (SCA1) gene. Am J Med Genet 74:488–493

    Article  PubMed  CAS  Google Scholar 

  • Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H (2002) Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am J Med Genet 114:578–583

    Article  PubMed  Google Scholar 

  • Matsumura R, Futamura N, Ando N, Ueno S (2003) Frequency of spinocerebellar ataxia mutations in the Kinki district of Japan. Acta Neurol Scand 107:38–41

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Mittal U, Srivastava AK, Jain S, Jain S, Mukerji M (2005) Founder haplotype for Machado-Joseph disease in the Indian population: novel insights from history and polymorphism studies. Arch Neurol 62:637–640

    Article  PubMed  Google Scholar 

  • Neilan BA, Wilton AN, Jacobs D (1997) A universal procedure for primer labelling of amplicons. Nucleic Acids Res 25:2938–2939

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y, Aoki M, Tsuda T, Kato H, Nagata T, Kameya T, Abe K, Itoyama Y (2000) High prevalence of spinocerebellar ataxia type 1 (SCA1) in an isolated region of Japan. J Neurol Sci 178:153–158

    Article  PubMed  CAS  Google Scholar 

  • Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet al, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  PubMed  CAS  Google Scholar 

  • Pearson CE, Sinden RR (1998) Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol 8:321–330

    Article  PubMed  CAS  Google Scholar 

  • Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR (1998) Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701–2708

    Article  PubMed  CAS  Google Scholar 

  • Ramesar RS, Bardien S, Beighton P, Bryer A (1997) Expanded CAG repeats in spinocerebellar ataxia (SCA1) segregate with distinct haplotypes in South african families. Hum Genet 100:131–137

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Leggo J, Goodburn S, Barton DE, Ferguson-Smith MA (1995) Haplotype analysis of the delta 2642 and (CAG)n polymorphisms in the Huntington’s disease (HD) gene provides an explanation for an apparent ‘founder’ HD haplotype. Hum Mol Genet 4:203–206

    Article  PubMed  CAS  Google Scholar 

  • Saleem Q, Choudhry S, Mukerji M, Bashyam L, Padma MV, Chakravarthy A, Maheshwari MC, Jain S, Brahmachari SK (2000) Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum Genet 106:179–187

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Yabe I, Yamashita I, Tashiro K (2000) Prevalence of triplet repeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan. J Neurol Sci 175:45–51

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Yabe I, Tashiro K (2003) The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 100:198–205

    Article  PubMed  CAS  Google Scholar 

  • Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O (1997) Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol 42:924–932

    Article  PubMed  CAS  Google Scholar 

  • Sinha KK, Worth PF, Jha DK, Sinha S, Stinton VJ, Davis MB, Wood NW, Sweeney MG, Bhatia KP (2004) Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern India. J Neurol Neurosurg Psychiatry 75:448–452

    Article  PubMed  CAS  Google Scholar 

  • Sobczak K, Krzyzosiak WJ (2004a) Imperfect CAG repeats form diverse structures in SCA1 transcripts. J Biol Chem 279:41563–41572

    Article  PubMed  CAS  Google Scholar 

  • Sobczak K, Krzyzosiak WJ (2004b) Patterns of CAG repeat interruptions in SCA1 and SCA2 genes in relation to repeat instability. Hum Mutat 24:236–247

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, Didierjean O, Durr A, Oyake M, Shimohata T, Sasaki R, Koide R, Igarashi S, Hayashi S, Takiyama Y, Nishizawa M, Tanaka H, Zoghbi H, Brice A, Tsuji S (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet 63:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • Tsai HF, Liu CS, Leu TM, Wen FC, Lin SJ, Liu CC, Yang DK, Li C, Hsieh M (2004) Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurol Scand 109:355–360

    Article  PubMed  CAS  Google Scholar 

  • Wakisaka A, Sasaki H, Takada A, Fukazawa T, Suzuki Y, Hamada T, Iwabuchi K, Tashiro K, Yoshiki T (1995) Spinocerebellar ataxia 1 (SCA1) in the Japanese in Hokkaido may derive from a single common ancestry. J Med Genet 32:590–592

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Sun F, Zhao H (2005) HAPLORE: a program for haplotype reconstruction in general pedigrees without recombination. Bioinformatics 21:90–103

    Article  PubMed  CAS  Google Scholar 

  • Zhou YX, Qiao WH, Gu WH, Xie H, Tang BS, Zhou LS, Yang BX, Takiyama Y, Tsuji S, He HY, Deng CX, Goldfarb LG, Wang GX (2001) Spinocerebellar ataxia type 1 in China: molecular analysis and genotype-phenotype correlation in 5 families. Arch Neurol 58:789–794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Samir K. Brahmachari for providing intellectual support during the course of this investigation. We are grateful to Inder and Simone for technical support. Financial support from the Department of Biotechnology, Government of India, in the Project on Disease Genomics (GAP0006) and CSIR project on “Predictive medicine using repeat and single nucleotide polymorphisms (CMM0016)” is duly acknowledged. Uma Mittal is grateful to UGC for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Mukerji.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, U., Sharma, S., Chopra, R. et al. Insights into the mutational history and prevalence of SCA1 in the Indian population through anchored polymorphisms. Hum Genet 118, 107–114 (2005). https://doi.org/10.1007/s00439-005-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0018-8

Keywords

Navigation