Skip to main content

Advertisement

Log in

Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Proximal spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous mutations of the SMN1 gene. SMN1 interacts with multiple proteins with functions in snRNP biogenesis, pre-mRNA splicing and presumably neural transport. SMN2, a nearly identical copy of SMN1, produces predominantly exon 7-skipped transcripts, whereas SMN1 mainly produces full-length transcripts. The SR-like splicing factor Htra2-beta1 facilitates correct splicing of SMN2 exon 7 through direct interaction with an exonic splicing enhancer within exon 7. In rare cases, siblings with identical 5q13-homologues and homozygous absence of SMN1 show variable phenotypes, suggesting that SMA is modified by other factors. By analysing nine SMA discordant families, we demonstrate that in all families unaffected siblings produce significantly higher amounts of SMN, Gemin2, Gemin3, ZPR1 and hnRNP-Q protein in lymphoblastoid cell lines, but not in primary fibroblasts, compared with their affected siblings. Protein p53, an additional SMN-interacting protein, is not subject to an SMN-dependent regulation. Surprisingly, Htra2-beta1 is also regulated by this tissue-specific mechanism. A similar regulation was found in all type I–III SMA patients, although at a different protein level than in discordant families. Thus, our data show that reduced SMN protein levels cause a reduction in the amount of its interacting proteins and of Htra2-beta1 in both discordant and non-discordant SMA families. We provide evidence that an intrinsic SMA modifying factor acts directly on the expression of SMN, thus influencing the SMA phenotype. Further insights into the molecular pathway and the identification of SMA modifying gene(s) may help to find additional targets for a therapy approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A, B
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brahe C, Servidei S, Zappata S, Ricci E, Tonali P, Neri G (1995) Genetic homogeneity between childhood-onset and adult-onset autosomal recessive spinal muscular atrophy. Lancet 346:741–742

    CAS  PubMed  Google Scholar 

  • Burghes AH (1997) When is a deletion not a deletion? When it is converted. Am J Hum Genet 61:9–15

    CAS  PubMed  Google Scholar 

  • Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K (1997) Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 61:40–50

    CAS  PubMed  Google Scholar 

  • Campbell L, Hunter KM, Mohaghegh P, Tinsley JM, Brasch MA, Davies KE (2000) Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? Hum Mol Genet 9:1093–1100

    CAS  PubMed  Google Scholar 

  • Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384

    PubMed  Google Scholar 

  • Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M (1999) The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol 147:715–728

    CAS  PubMed  Google Scholar 

  • Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Cobben JM, van der Steege G, Grootscholten P, de Visser M, Scheffer H, Buys CH (1995) Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet 57:805–808

    CAS  PubMed  Google Scholar 

  • Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    Google Scholar 

  • Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023–1029

    CAS  PubMed  Google Scholar 

  • Gangwani L, Mikrut M, Theroux S, Sharma M, Davis RJ (2001) Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol 3:376–383

    Google Scholar 

  • Gavrilov DK, Shi X, Das K, Gilliam TC, Wang CH (1998) Differential SMN2 expression associated with SMA severity. Nat Genet 20:230–231

    CAS  PubMed  Google Scholar 

  • Giesemann T, Rathke-Hartlieb S, Rothkegel M, Bartsch JW, Buchmeier S, Jockusch BM, Jockusch H (1999) A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with SMN in nuclear gems. J Biol Chem 274:37908–37914

    Article  CAS  PubMed  Google Scholar 

  • Hahnen E, Forkert R, Marke C, Rudnik-Schoneborn S, Schonling J, Zerres K, Wirth B (1995) Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet 4:1927–1933

    CAS  PubMed  Google Scholar 

  • Helmken C, Wirth B (2000) Exclusion of Htra2-beta1, an up-regulator of full-length SMN2 transcript, as a modifying gene for spinal muscular atrophy. Hum Genet 107:554–558

    Google Scholar 

  • Helmken C, Wetter A, Rudnik-Schoneborn S, Liehr T, Zerres K, Wirth B (2000) An essential SMN interacting protein (SIP1) is not involved in the phenotypic variability of spinal muscular atrophy (SMA). Eur J Hum Genet 8:493–499

    Google Scholar 

  • Hofmann Y, Wirth B (2002) hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1. Hum Mol Genet 11:2037–2049

    Article  CAS  PubMed  Google Scholar 

  • Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B (2000) Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 97:9618–9623

    CAS  PubMed  Google Scholar 

  • Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    CAS  PubMed  Google Scholar 

  • Jablonka S, Bandilla M, Wiese S, Buhler D, Wirth B, Sendtner M, Fischer U (2001) Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Hum Mol Genet 10:497–505

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    CAS  PubMed  Google Scholar 

  • Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565

    CAS  PubMed  Google Scholar 

  • Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013–1021

    CAS  PubMed  Google Scholar 

  • Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9:259–265

    CAS  PubMed  Google Scholar 

  • Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66

    CAS  PubMed  Google Scholar 

  • Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96:6307–6311

    CAS  PubMed  Google Scholar 

  • McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW, Burghes AH (1997) Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60:1411–1422

    CAS  PubMed  Google Scholar 

  • Monani UR, Coovert DD, Burghes AH (2000) Animal models of spinal muscular atrophy. Hum Mol Genet 9:2451–2457

    CAS  PubMed  Google Scholar 

  • Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 20:5443–5452

    Article  CAS  PubMed  Google Scholar 

  • Munsat TL, Davies KE (1992) International SMA consortium meeting (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 2:423–428

    CAS  PubMed  Google Scholar 

  • Pearn J (1980) Classification of spinal muscular atrophies. Lancet 1:919–922

    CAS  PubMed  Google Scholar 

  • Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95:615–624

    PubMed  Google Scholar 

  • Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779

    Article  CAS  Google Scholar 

  • Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H (2001) The HUGO Gene Nomenclature Committee (HGNC). Hum Genet 109:678–680

    CAS  PubMed  Google Scholar 

  • Rossoll W, Kroning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11:93–105

    Article  CAS  PubMed  Google Scholar 

  • Wang CH, Xu J, Carter TA, Ross BM, Dominski MK, Bellcross CA, Penchaszadeh GK, Munsat TL, Gilliam TC (1996) Characterization of survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal muscular atrophy. Hum Mol Genet 5:359–365

    Google Scholar 

  • Wang J, Dreyfuss G (2001) A cell system with targeted disruption of the SMN gene: functional conservation of the SMN protein and dependence of Gemin2 on SMN. J Biol Chem 276:9599–9605

    Article  CAS  PubMed  Google Scholar 

  • Williams BY, Hamilton SL, Sarkar HK (2000) The survival motor neuron protein interacts with the transactivator FUSE binding protein from human fetal brain. FEBS Lett 470:207–210

    CAS  PubMed  Google Scholar 

  • Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237

    Article  CAS  PubMed  Google Scholar 

  • Wirth B (2002) Spinal muscular atrophy: state-of-the-art and therapeutic perspectives. Amyotroph Lateral Scler Other Motor Neuron Disord 3:87–95

    Article  CAS  PubMed  Google Scholar 

  • Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schoneborn S, Wienker T, Zerres K (1999) Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 64:1340–1356

    CAS  PubMed  Google Scholar 

  • Young PJ, Day PM, Zhou J, Androphy EJ, Morris GE, Lorson CL (2002) A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem 277:2852–2859

    Article  CAS  Google Scholar 

  • Zerres K, Rudnik-Schoneborn S (1995) Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol 52:518–523

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the families with SMA and clinicians who helped with this study. We are grateful to Utz Fischer for providing an antibody against Gemin2, Michael Sendtner and W. Rossol for providing an antibody against hnRNP-Q, F.A. Grässer for an antibody against Gemin3, L. Gangwani and R. Davis for antibodies against ZPR1. This work was generously supported by grants from the Deutsche Forschungsgemeinschaft (Grant SFB400-A6, Graduiertenkolleg 246), Families of SMA and BONFOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunhilde Wirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmken, C., Hofmann, Y., Schoenen, F. et al. Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum Genet 114, 11–21 (2003). https://doi.org/10.1007/s00439-003-1025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-1025-2

Keywords

Navigation