Skip to main content
Log in

Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Small supernumerary marker chromosomes (SMCs) are present in about 0.05% of the human population. In approximately 30% of SMC carriers (excluding the ~60% SMC derived from one of the acrocentric chromosomes), an abnormal phenotype is observed. The clinical outcome of an SMC is difficult to predict as they can have different phenotypic consequences because of (1) differences in euchromatic DNA-content, (2) different degrees of mosaicism, and/or (3) uniparental disomy (UPD) of the chromosomes homologous to the SMC. Here, we present 35 SMCs, which are derived from all human chromosomes, apart from chromosome 6, as demonstrated by the appropriate molecular cytogenetic approaches, such as centromere-specific multicolor fluoresence in situ hybridization (cenM-FISH), multicolor banding (MCB), and subcentromere-specific multicolor FISH (subcenM-FISH). In nine cases without an aberrant phenotype, neither partial proximal trisomies nor UPD could be detected. Abnormal clinical findings, such as psychomotoric retardation and/or craniofacial dysmorphisms, were associated with seven of the cases in which subcentromeric single-copy probes were proven to be present in three copies. Conversely, in eight cases with a normal phenotype, proximal euchromatic material was detected as partial trisomy. UPD was studied in 12 cases and subsequently detected in two of the cases with SMC (partial UPD 4p and maternal UPD 22 in a der(22)-syndrome patient), indicating that SMC carriers have an enhanced risk for UPD. At present, small proximal trisomies of 1p, 1q, 2p, 6p, 6q, 7q, 9p, and 12q seem to lead to clinical manifestations, whereas partial proximal trisomies of 2q, 3p, 3q, 5q, 7p, 8p, 17p, and 18p may not be associated with significant clinical symptoms. With respect to clinical outcome, a classification of SMCs is proposed that considers molecular genetic and molecular cytogenetic characteristics as demonstrated by presently available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. Fig. 2.
Fig. 3. Fig. 4a, b. Fig. 5.

Similar content being viewed by others

References

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714

    Article  PubMed  Google Scholar 

  • Bridgland L, Footz TK, Kardel MD, Riazi MA, McDermid HE (2003) Three duplicons form a novel chimeric transcription unit in the pericentromeric region of chromosome 22q11. Hum Genet 112:57–61

    Article  CAS  PubMed  Google Scholar 

  • Buckton KE, Spowart G, Newton MS, Evans HJ (1985) Forty four probands with an additional "marker" chromosome. Hum Genet 69:353–370

    CAS  PubMed  Google Scholar 

  • Callen DF, Eyre H, Yip MY, Freemantle J, Haan EA (1992) Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am J Med Genet 43:709–715

    CAS  PubMed  Google Scholar 

  • Callen DF, Eyre H, Fang YY, Guan XY, Veleba A, Martin NJ, McGill J, Haan EA (1999) Origins of accessory small ring marker chromosomes derived from chromosome 1. J Med Genet 36:847–853

    CAS  PubMed  Google Scholar 

  • Chudoba I, Franke Y, Senger G, Sauerbrei G, Demuth S, Beensen V, Neumann A, Hansmann I, Claussen U (1999) Maternal UPD 20 in a hyperactive child with severe growth retardation. Eur J Hum Genet 7:533–540

    CAS  PubMed  Google Scholar 

  • Crolla JA (1998) FISH and molecular studies of autosomal supernumerary marker chromosomes excluding those derived from chromosome 15. II. Review of the literature. Am J Med Genet 75:367–381

    Article  CAS  PubMed  Google Scholar 

  • Crolla JA, Long F, Rivera H, Dennis NR (1998) FISH and molecular study of autosomal supernumerary marker chromosomes excluding those derived from chromosomes 15 and 22. I. Results of 26 new cases. Am J Med Genet 75:355–366

    Article  CAS  PubMed  Google Scholar 

  • Cunniff C (2002) Turner syndrome. Adolesc Med 13:359–366

    PubMed  Google Scholar 

  • D'Amato Sizonenko L, Ng D, Oei P, Winship I (2002) Supernumerary marker chromosomes 5: confirmation of a critical region and resultant phenotype. Am J Med Genet 111:19–26

    Article  PubMed  Google Scholar 

  • Eggeling F von, Hoppe C, Bartz U, Starke H, Houge G, Claussen U, Ernst G, Kotzot D, Liehr T (2002) Maternal uniparental disomy 12 in a healthy girl with a 47,XX,+der(12)(:p11→q11:)/46,XX karyotype. J Med Genet 39:519–521

    Article  PubMed  Google Scholar 

  • Fang YY, Eyre HJ, Bohlander SK, Estop A, McPherson E, Trager T, Riess O, Callen DF (1995) Mechanisms of small ring formation suggested by the molecular characterization of two small accessory ring chromosomes derived from chromosome 4. Am J Hum Genet 57:1137–1142

    CAS  PubMed  Google Scholar 

  • Fryns JP, Petit P, Heffinck R, Berghe H van den (1983) Mosaic pericentric inversion of chromosome 2. J Genet Hum 31:157–161

    CAS  PubMed  Google Scholar 

  • Funke B, Edelmann L, McCain N, Pandita RK, Ferreira J, Merscher S, Zohouri M, Cannizzaro L, Shanske A, Morrow BE (1999) Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11. Am J Hum Genet 64:747–758

    CAS  PubMed  Google Scholar 

  • Giardino D, Bettio D, Gottardi G, Rizzi N, Pierluigi M, Perfumo C, Cali A, Dagna Bricarelli F, Larizza L (1999) FISH characterization of two supernumerary r(1) associated with distinct clinical phenotypes. Am J Med Genet 84:377–380

    Article  CAS  PubMed  Google Scholar 

  • Giardino D, Finelli P, Russo S, Gottardi G, Rodeschini O, Atza MG, Natacci F, Larizza L (2002) Small familial supernumerary ring chromosome 2: FISH characterization and genotype-phenotype correlation. Am J Med Genet 111:319–323

    Article  PubMed  Google Scholar 

  • Guy J, Hearn T, Crosier M, Mudge J, Viggiano L, Koczan D, Thiesen HJ, Bailey JA, Horvath JE, Eichler EE, Earthrowl ME, Deloukas P, French L, Rogers J, Bentley D, Jackson MS (2003) Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10p. Genome Res 13:159–172

    Article  CAS  PubMed  Google Scholar 

  • Haddad BR, Schröck E, Meck J, Cowan J, Young H, Ferguson-Smith MA, Manoir S du, Ried T (1998) Identification of de novo chromosomal markers and derivatives by spectral karyotyping. Hum Genet 103:619–625

    Article  CAS  PubMed  Google Scholar 

  • Henegariu O, Bray-Ward P, Artan S, Vance GH, Qumsyieh M, Ward DC (2001) Small marker chromosome identification in metaphase and interphase using centromeric multiplex fish (CM-FISH). Lab Invest 81:475–481

    CAS  PubMed  Google Scholar 

  • Horvath JE, Gulden CL, Bailey JA, Yohn C, McPherson JD, Prescott A, Roe BA, De Jong PJ, Ventura M, Misceo D, Archidiacono N, Zhao S, Schwartz S, Rocchi M, Eichler EE (2003) Using a pericentromeric interspersed repeat to recapitulate the phylogeny and expansion of human centromeric segmental duplications. Mol Biol Evol (in press)

  • James RS, Temple IK, Dennis NR, Crolla JA (1995) A search for uniparental disomy in carriers of supernumerary marker chromosomes. Eur J Hum Genet 3:21–26

    CAS  PubMed  Google Scholar 

  • Knight SJ, Horsley SW, Regan R, Lawrie NM, Maher EJ, Cardy DL, Flint J, Kearney L (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5:1–8

    CAS  Google Scholar 

  • Kotzot D (2002) Review and meta-analysis of systematic searches for uniparental disomy (UPD) other than UPD 15. Am J Med Genet 111:366–375

    Article  PubMed  Google Scholar 

  • Langer S, Fauth C, Rocchi M, Murken J, Speicher MR (2001) AcroM fluorescent in situ hybridization analyses of marker chromosomes. Hum Genet 109:152–158

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter DH, Engel E (1995) Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet 4:1757–1764

    Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  • Liehr T, Claussen U (2002) Review: multicolor-FISH approaches for the characterization of human chromosomes in clinical genetics and tumor cytogenetics. Curr Genomics 3:213–235

    CAS  Google Scholar 

  • Liehr T, Pfeiffer RA, Trautmann U (1992) Typical and partial cat eye syndrome: identification of the marker chromosome by FISH. Clin Genet 42:91–96

    CAS  PubMed  Google Scholar 

  • Liehr T, Thoma K, Kammler K, Gehring C, Ekici A, Bathke KD, Grehl H, Rautenstrauss B (1995) Direct preparation of uncultured EDTA-treated or heparinized blood for interphase FISH analysis. Appl Cytogenet 21:185–188

    Google Scholar 

  • Liehr T, Rautenstrauss B, Grehl H, Bathke KD, Ekici A, Rauch A, Rott HD (1996) Mosaicism for the Charcot-Marie-Tooth disease type 1A duplication suggests somatic reversion. Hum Genet 98:22–28

    Google Scholar 

  • Liehr T, Beensen V, Hauschild R, Ziegler M, Hartmann I, Starke H, Heller A, Kähler C, Schmidt M, Reiber W, Hesse M, Claussen U (2001) Pitfalls of rapid prenatal diagnosis using the interphase nucleus. Prenat Diagn 21:419–421

    Article  CAS  PubMed  Google Scholar 

  • Liehr T, Nietzel A, Rocchi M, Heller A, Starke H, Claussen U, Eggeling F von (2002a) Centromere-specific multicolor-FISH (cenM-FISH) followed by analysis for uniparental disomy—a useful tool in prenatal diagnosis. In: Macek M (ed) Early prenatal diagnosis, fetal cells and DNA in the mother—present state and perpectives. Karolinum Press, Prag, pp 293–300

  • Liehr T, Nietzel A, Starke H, Heller A, Weise A, Mrasek K, Claussen U (2002b) Characterization of small human marker chromosomes by centromere-specific multicolor-FISH (cenM-FISH) and high resolution multicolor banding (MCB). ECA Newsletter 10:3–8

    Google Scholar 

  • Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T (2001) Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93:242–248

    Article  CAS  PubMed  Google Scholar 

  • Müller-Navia J, Nebel A, Oehler D, Theile U, Zabel B, Schleiermacher E (1996) Microdissection and DOP-PCR-based reverse chromosome painting as a fast and reliable strategy in the analysis of various structural chromosome abnormalities. Prenat Diagn 16:915–922

    PubMed  Google Scholar 

  • National Institutes of Health and Institute of Molecular Medicine Collaboration (1996) A complete set of human telomeric probes and their clinical application. Nat Genet 14:86–89

    PubMed  Google Scholar 

  • Nietzel A, Rocchi M, Starke H, Heller A, Fiedler W, Wlodarska I, Loncarevic IF, Beensen V, Claussen U, Liehr T (2001) A new multicolor-FISH approach for the characterization of marker chromosomes: centromere-specific multicolor-FISH (cenM-FISH). Hum Genet 108:199–204

    CAS  PubMed  Google Scholar 

  • Nietzel A, Heller A, Starke H, Liehr T (2002) Centromere-specific multicolor-FISH (cenM-FISH). In: Rautenstrauß B, Liehr T (eds) FISH technology, a Springer laboratory manual. Springer, Berlin Heidelberg New York, pp 425–431

  • Nietzel A, Albrecht B, Starke H, Heller A, Gillessen-Kaesbach G, Claussen U, Liehr T (2003) Partial hexasomy 15pter→15q13 including SNRPN and D15S10: first molecular cytogenetically proven case report. J Med Genet 40 E28:1–4

    Google Scholar 

  • Ostroverkhova NV, Nazarenko SA, Rubtsov NB, Nazarenko LP, Bunina EN (1999) Characterization of a small supernumerary ring marker derived from chromosome 2 by forward and reverse chromosome painting. Am J Med Genet 87:217–220

    Article  CAS  PubMed  Google Scholar 

  • Queisser-Luft A, Stolz G, Wiesel A, Schlaefer K, Spranger J (2002) Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990–1998). Arch Gynecol Obstet 266:163–167

    CAS  PubMed  Google Scholar 

  • Röthlisberger B, Chrzanowska K, Balmer D, Riegel M, Schinzel A (2000) A supernumerary marker chromosome originating from two different regions of chromosome 18. J Med Genet 37:121–124

    Article  PubMed  Google Scholar 

  • Salafsky IS, MacGregor SN, Claussen U, Eggeling F von (2001) Maternal UPD 20 in an infant from a pregnancy with mosaic trisomy 20. Prenat Diagn 21:860–863

    Article  CAS  PubMed  Google Scholar 

  • Senger G, Chudoba I, Plesch A (1998) Multicolor-FISH—the identification of chromosome aberrations by 24 colors. Bioforum 9:499–503

    Google Scholar 

  • Shaffer LG, Agan N, Goldberg JD, Ledbetter DH, Longshore JW, Cassidy SB (2001) American College of Medical Genetics statement of diagnostic testing for uniparental disomy. Genet Med 3:206–211

    CAS  PubMed  Google Scholar 

  • Smith MM (2002) Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol 14:279–285

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz P, Bocian E, Jakubow-Durska K, Obersztyn E, Lato E, Starke H, Mroczek K, Mazurczak T (2000) Identification of supernumerary marker chromosomes derived from chromosomes 5, 6, 19, and 20 using FISH. J Med Genet 37:114–120

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz P, Parka SS, Holder SE, Waters CS, Palmer RW, Berend SA, Shaffer LG, Potocki L, Lupski JR (2001) Trisomy 17p10-p12 resulting from a supernumerary marker chromosome derived from chromosome 17: molecular analysis and delineation of the phenotype. Clin Genet 60:336–344

    Article  CAS  PubMed  Google Scholar 

  • Starke H, Schreyer I, Kähler C, Fiedler W, Beensen V, Heller A, Nietzel A, Claussen U, Liehr T (1999) Molecular cytogenetic characterization of a prenatally detected supernumerary minute marker chromosome 8. Prenat Diagn 19:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Starke H, Raida M, Trifonov V, Clement JH, Loncarevic IF, Heller A, Bleck C, Nietzel A, Rubtsov N, Claussen U, Liehr T (2001) Molecular cytogenetic characterization of an acquired minute supernumerary marker chromosome as the sole abnormality in a case clinically diagnosed as atypical Philadelphia-negative chronic myelogenous leukaemia. Br J Haematol 113:435–438

    Article  CAS  PubMed  Google Scholar 

  • Starke H, Seidel J, Henn W, Reichardt S, Volleth M, Stumm M, Behrend C, Sandig KR, Kelbova C, Senger G, Albrecht B, Hansmann I, Heller A, Claussen U, Liehr T (2002) Homologous sequences at human chromosome 9 bands p12 and q13–21.1 are involved in different patterns of pericentric rearrangements. Eur J Hum Genet 10:790–800

    Article  CAS  PubMed  Google Scholar 

  • Starke H, Mitulla B, Nietzel A, Heller A, Beensen V, Grosswendt G, Claussen U, Eggeling F von, Liehr T (2003) First patient with trisomy 21 accompanied by an additional der(4)(:p11→q11:) plus partial uniparental disomy 4p15–16. Am J Med Genet 116A:26–30

    Article  PubMed  Google Scholar 

  • Sumption ND, Barber JC (2001) A transmitted deletion of 2q13 to 2q14.1 causes no phenotypic abnormalities. J Med Genet 38:125–127

    Article  CAS  PubMed  Google Scholar 

  • Trifonov V, Seidel J, Starke H, Prechtel M, Beensen V, Ziegler M, Hartmann I, Heller A, Nietzel A, Claussen U, Liehr T (2003) Enlarged chromosome 13 p-arm hiding a cryptic partial trisomy 6p22.2-pter. Prenat Diagn 23:427–430

    Google Scholar 

  • Velagaleti GV, Jalal SM, Kukolich MK, Lockhart LH, Tonk VS (2002) De novo supernumerary ring chromosome 7: first report of a non-mosaic patient and review of the literature. Clin Genet 61:202–206

    Article  CAS  PubMed  Google Scholar 

  • Verma RS, Babu A (1989) Human chromosomes—manual of basic technologies, 4th edn. Pergamon, New York

  • Villa N, Riva P, Colombo D, Sala E, Mariani S, Zorloni C, Crosti F, Dalpra L (2001) Identification of a small supernumerary marker chromosome, r(2)(p10q11.2), and the problem of determining prognosis. Prenat Diagn 21:801–805

    Article  CAS  PubMed  Google Scholar 

  • Weise A, Starke H, Heller A, Tonnies H, Volleth M, Stumm M, Gabriele S, Nietzel A, Claussen U, Liehr T (2002) Chromosome 2 aberrations in clinical cases characterised by high resolution multicolour banding and region specific FISH probes. J Med Genet 39:434–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Robert-Pfleger-Stiftung (Bamberg, Germany), Herbert Quandt Stiftung der VARTA, and the EU (ICA2-CT-2000-10012). We thank Dr. Lisa Shaffer (Spokane, USA), Dr. Jasen Anderson (Brisbane, Australia), and Dr. Joris Vermeesch (Leuven, Belgium) for helpful discussions. The continuous support of the Carl Zeiss (Jena, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Liehr.

Additional information

Electronic database information: accession numbers and URLs for the data in this article are as follows:

ENSEMBL-database, http://www.ensembl.org/

National Center for Biotechnology Information (NCBI), http://www.ncbi.nlm.nih.gov/

Genome Database (GDB), http://www.gdb.org/gdb/

OMIM (Online Mendelian Inheritance in Man) Database, http://www.ncbi.nlm.nih.gov/omim

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starke, H., Nietzel, A., Weise, A. et al. Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification. Hum Genet 114, 51–67 (2003). https://doi.org/10.1007/s00439-003-1016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-1016-3

Keywords

Navigation