Skip to main content
Log in

A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation

  • ORIGINAL PAPER
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (cat GC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 × 10−7 and 4.7 × 10−7 transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H.␣pylori recipients, with pHel2 showing an efficiency of 2.0 × 10−5 transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylorirecA + gene, and the expression of the heterologous green fluorescent protein (GFP) in H.␣pylori demonstrate the general usefulness of␣this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 22 April 1997 / Accepted: 4 November 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuermann, D., Haas, R. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257, 519–528 (1998). https://doi.org/10.1007/s004380050677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004380050677

Navigation