Skip to main content
Log in

Mapping of dynamic QTLs for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a backcross inbred line population of Upland cotton

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Key message

A backcross inbred line population of cotton was evaluated for Fusarium wilt race 4 resistance at different days after inoculation (DAI). Both constitutively expressed and developmentally regulated QTLs were detected.

Abstract

The soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) causes Fusarium wilt including seedling mortality in cotton. A backcross inbred line (BIL) population of 181 lines, derived from a bi-parental cross of moderately resistant non-recurrent Hai 7124 (Gossypium barbadense) and recurrent parent CCRI 36 (G. hirsutum), was evaluated under temperature-controlled conditions for FOV4 resistance with artificial inoculations. Based on three replicated tests evaluated at 7, 14, 21, and 28 days after inoculation (DAI), only 2–5 BILs showed lower disease severity ratings (DSR) than the parents while 22–50 BILs were more susceptible, indicating transgressive segregation toward susceptibility. Although DSR were overall congruent between DAI, there were many BILs displaying different responses to FOV4 across DAI. Genetic mapping using 7709 SNP markers identified 42 unique QTLs for four evaluation parameters- disease incidence (DI), DSR, mortality rate (MR), and area under disease progress curve (AUDPC), including 26 for two or more parameters. All five QTLs for AUDPC were co-localized with QTLs for DI, DSR, and/or MR at one or two DAI, indicating the unnecessary use of AUDPC in QTL mapping for FOV4 resistance. Those common QTLs explained the significant positive associations between parameters observed. Ten common QTLs with negative or positive additive effects were detected between DAI. DAI-specific and consistent QTLs were detected between DAI in cotton for the first time, suggesting the existence of both constitutively expressed and developmentally regulated QTLs for FOV4 resistance and the importance of evaluating genetic populations for FOV4 resistance at different growth stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No other data is available.

References

  • Abdelraheem A, Liu F, Song M, Zhang JF (2017) A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Mol Genet Genom 292:1221–1235

    CAS  Google Scholar 

  • Abdelraheem A, Kuraparthy V, Hinze L, Stelly S, Zhang JF (2020) A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt in the U.S. Upland cotton. Theor Appl Genet 133:563–577

    CAS  PubMed  Google Scholar 

  • Bell AA, Gu A, Olvey J, Wagner TA, Tashpulatov JJ, Prom S, Quintana J, Nichols RL, Liu J (2019) Detection and characterization of Fusarium oxysporum f. sp. vasinfectum VCG0114 (Race 4) isolates of diverse geographic origins. Plant Dis 103:1998–2009

    CAS  PubMed  Google Scholar 

  • Blasingame D, Patel MV (2013) Cotton disease loss estimate committee report. In: Proceedings of the Beltwide cotton conference, National Cotton Council, Memphis, TN, pp 1242–1245

  • Cianchetta A, Davis RM (2015) Fusarium wilt of cotton: management strategies. Crop Prot 73:40–44

    Google Scholar 

  • Cianchetta AN, Allen TW, Hutmacher RB, Kemerait RC, Kirkpatrick TL, Lawrence GW, Lawrence KS, Mueller JD, Nichols RL, Olsen MW, Overstreet C, Woodward JE, Davis RM (2015) Survey of Fusarium oxysporum f. sp. vasinfectum in the United States. J Cotton Sci 19:328–336

    CAS  Google Scholar 

  • Davis RM, Colyer PD, Rothrock CS, Kochman JK (2006) Fusarium wilt of cotton: population diversity and implications for management. Plant Dis 90:692–703

    CAS  PubMed  Google Scholar 

  • Diaz J, Garcia J, Lara C, Hutmacher RB, Ulloa M, Nichols RL, Ellis ML (2021) Characterization of current Fusarium oxysporum f. sp. vasinfectum isolates from cotton in the San Joaquin Valley of California and Lower Valley El Paso, Texas. Plant Dis. https://doi.org/10.1094/PDIS-05-20-1038-RE

    Article  PubMed  Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    CAS  PubMed  Google Scholar 

  • Fahmy T (1934) The selection of wilt immune strains of long staple cotton (Sakha 4 Gidid). Egypt Ministry Agric Techn Sci Serv Bull 130. p 25

  • Feng CD, Zhang JF, Liu JL, Wu ZB, Guo JH, Sun JZ (1998) Allelism and linkage test of upland cotton genes resistant to Fusarium wilt. Hereditas 20:33–36

    CAS  Google Scholar 

  • Gilligan CA (1990) Comparison of disease progress curves. New Phytol 115:223–242

    CAS  PubMed  Google Scholar 

  • Halpern HC, Bell AA, Wagner TA, Liu J, Nichols RL, Olvey J, Woodward JE, Sanogo S, Jones CA, Chan CT, Brewer MT (2018) First report of Fusarium wilt of cotton caused by Fusarium oxysporum f. sp. vasinfectum race 4 in Texas, U.S.A. Plant Dis 102:446

    Google Scholar 

  • Halpern HC, Qi P, Kemerait RC, Brewer MT (2020) Genetic diversity and population structure of races of Fusarium oxysporum causing cotton wilt. G3 (bethesda) 10:3261–3269

    CAS  Google Scholar 

  • Hillock RJ (1992) Fusarium wilt. In: Hillocks RJ (ed) Cotton diseases. CAB International, Wallingford, pp 127–160

    Google Scholar 

  • Holmes EA, Bennett RS, Spurgeon DW, Colyer PD, Davis RM (2009) New genotypes of Fusarium oxysporum f. sp. vasinfectum from the southeastern United States. Plant Dis 93:12981304

    Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    CAS  PubMed  Google Scholar 

  • Hutmacher RB, Ulloa M, Wright SD, Campbell BT, Percy RG, Wallace T, Myers G, Bourland F, Weaver D, Chee P, Thaxton P, Zhang J, Smith W, Dever J, Kuraparthy V, Bowman D, Jones D, Burke J (2013) Elite-Upland cotton germplasm-pool assessment of Fusarium wilt resistance in California. Agron J 105:1635–1644

    Google Scholar 

  • Jeger M, Viljanen-Rollinson S (2001) The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet 102:32–40

    Google Scholar 

  • Kim Y, Hutmacher RB, Davis RM (2005) Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Dis 89:366–372

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YB, Wu CJ, Jiang GH, Wang LQ, He YQ (2007) Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breed 126:541–547

    Google Scholar 

  • Liu S, Zhang X, Xiao S, Ma J, Shi W, Qin T, Xi H, Nie X, You C, Xu Z, Wang T, Wang Y, Zhang Z, Li J, Kong J, Aierxi A, Yu Y, Lindsey K, Klosterman SJ, Zhang X, Zhu L (2021) A single-nucleotide mutation in a Glutamate receptor-like gene confers resistance to Fusarium wilt in Gossypium hirsutum. Adv Sci (weinh) 8:2002723

    CAS  Google Scholar 

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9:e98855

    PubMed  PubMed Central  Google Scholar 

  • Ma J, Pei W, Ma Q, Geng Y, Liu G, Liu J, Cui Y, Zhang X, Wu M, Li X, Li D, Zang X, Song J, Tang S, Zhang J, Yu S, Yu J (2019) QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor Appl Genet 132:2663–2676

    CAS  PubMed  Google Scholar 

  • Madden LV, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. The American Phytopathological Society, APS Press, St. Paul

    Google Scholar 

  • Marla SR, Chu K, Chintamanani S, Multani DS, Klempien A, DeLeon A, Bong-Suk K, Dunkle LD, Dilkes BP, Johal GS (2018) Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1. PLoS Pathog 14:e1007356

    PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Mihelich NT, Mulkey SE, Stec AO, Stupar RM (2020) Characterization of genetic heterogeneity within accessions in the USDA soybean germplasm collection. Plant Genome 13:e20000

    CAS  PubMed  Google Scholar 

  • Mohler V, Stadlmeier M (2019) Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet 60:291–300

    CAS  PubMed  Google Scholar 

  • Netzer D (1982) Inheritance of resistance to Fusarium oxysporum in watermelon and cotton; mechanism of resistance in cotton. La Selection Des Plantes Pour La Resistance Aux Maladies 10:137–142

    Google Scholar 

  • Netzer DY, Tal Y, Marani A, Weintall C (1985) Resistance of interspecific cotton hybrid (Gossypium hirsutum × G. barbadense containing G. harknessii cytoplasm) to Fusarium wilt. Plant Dis 69:312–313

    Google Scholar 

  • Sanogo S, Zhang JF (2016) Resistance sources, resistance screening techniques and disease management for Fusarium wilt in cotton. Euphytica 207:255–271

    CAS  Google Scholar 

  • Smith AL, Dick JB (1960) Inheritance of resistance to Fusarium wilt in Upland and Sea Island cottons as complicated by nematodes under field conditions. Phytopathology 50:44–48

    Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa M, Wang C, Hutmacher RB, Wright SD, Davis RM, Saski CA, Roberts PA (2011) Mapping Fusarium wilt race 1 resistance genes in cotton by inheritance, QTL and sequencing composition. Mol Genet Genom 286:21–36

    CAS  Google Scholar 

  • Ulloa M, Hutmacher RB, Roberts PA, Wright SD, Nichols RL, Davis RM (2013) Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor Appl Genet 126:1405–1418

    CAS  PubMed  Google Scholar 

  • Wang C, Roberts PA (2006) A Fusarium wilt resistance gene in Gossypium barbadense and its effect on root-knot nematode-wilt disease complex. Phytopathology 96:727–734

    CAS  PubMed  Google Scholar 

  • Wang P, Su L, Qin L, Hu B, Guo W, Zhang T (2009) Identification and molecular mapping of Fusarium wilt resistant gene in upland cotton. Theor Appl Genet 119:733–739

    CAS  PubMed  Google Scholar 

  • Wang C, Ulloa M, Duong T, Roberts PA (2018) QTL mapping of multiple independent loci for resistance to Fusarium oxysporum f. sp. vasinfectum races 1 and 4 in an interspecific cotton population. Phytopathology 108:759–767

    PubMed  Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu L, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen LL, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    CAS  PubMed  Google Scholar 

  • Welz HG, Schechert AW, Geiger HH (1999) Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet 98:1036–1045

    CAS  Google Scholar 

  • Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D (2013) Mapping quantitative trait loci for lint yield and fber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    PubMed  Google Scholar 

  • Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  • Zhang JF, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RG (2012) Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica 187:147–160

    Google Scholar 

  • Zhang JF, Fang H, Zhou HP, Sanogo S, Ma ZY (2014) Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton. Crop Sci 54:1289–1303

    Google Scholar 

  • Zhang JF, Sanogo S, Ma ZY, Qu YY (2015a) Breeding, genetics, and quantitative trait locus mapping for Fusarium wilt resistance in cotton. Crop Sci 55:2435–2453

    CAS  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly D, Hulse-Kemp AM et al (2015b) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    CAS  PubMed  Google Scholar 

  • Zhang JF, Zhu Y, Abdelraheem A, Lujan P, Idowu J, Nichols R, Wedegaertner T (2020a) Field survey, detection and characterization of Fusarium wilt race 4 in cotton in New Mexico. Proceedings of the Beltwide Cotton Conference. p. 84

  • Zhang JF, Abdelraheem A, Zhu Y, Wheeler TA, Dever JK, Frelichowski J, Love J, Ulloa M, Jenkins JN, McCarty JC Jr, Nichols R, Wedegaertner T (2020b) Assessing genetic variation for Fusarium wilt race 4 resistance in tetraploid cotton by screening over three thousand germplasm lines under greenhouse or controlled conditions. Euphytica 216:106

    Google Scholar 

  • Zhang JF, Abdelraheem A, Zhu Y, Wheeler TA, Dever JK, Elkins-Arce H, Nichols R, Wedegaertner T (2020c) Pedigree selection under field conditions within Acala 1517–08 and its glandless derivatives for development of cotton resistant to Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum race 4. Euphytica 216:155

    CAS  Google Scholar 

  • Zhang J, Bourland F, Wheeler T, Wallace T (2020d) Bacterial blight resistance in cotton: genetic basis and molecular mapping. Euphytica 216:111

    CAS  Google Scholar 

  • Zhang JF, Abdelraheem A, Zhu Y, Wheeler TA, Dever JK, Nichols R, Wedegaertner T (2021a) Importance of temperature in evaluating cotton for resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum race 4. Crop Sci 61:1783–1796

    CAS  Google Scholar 

  • Zhang JF, Abdelraheem A, Zhu Y, Wheeler TA, Dever JK, Ma J, Yu J, Shi Y, Yuan Y, Wedegaertner Y (2021b) Dynamic responses to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in two introgressed populations of Upland cotton (Gossypium hirsutum). Euphytica 217:98

    CAS  Google Scholar 

  • Zhu YJ, Zhang XY, Li JR, Han L, Zhang W (2010) Inheritance of resistance to Fusarium wilt and their molecular marker in Gossypium barbadense (In Chinese with English abstract). Xinjiang Agric Sci 2:268–273

    Google Scholar 

  • Zhu Y, Abdelraheem A, Teng ZH, Sanogo S, Wheeler T, Wedegaertner T, and Zhang JF (2019) Pathogenicity test of Fusarium wilt and screening germplasm lines for Fusarium wilt resistance in cotton. Proceedings of the Beltwide Cotton Conference, p.15

  • Zhu Y, Lujan PA, Wedegaertner T, Nichols R, Abdelraheem A, Zhang JF, Sanogo S (2020) First report of Fusarium oxysporum f. sp. vasinfectum race 4 causing Fusarium wilt of cotton in New Mexico, USA. Plant Dis 104:588

    Google Scholar 

  • Zhu Y, Abdelraheem A, Lujan P, Idowu OJ, Sullivan P, Nichols R, Wedegaertner T, Zhang JF (2021a) Detection and characterization of Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 causing Fusarium wilt of cotton seedlings in New Mexico, USA. Plant Dis. https://doi.org/10.1094/PDIS-10-20-2174-RE)

    Article  PubMed  Google Scholar 

  • Zhu Y, Abdelraheem A, Wheeler TA, Dever JK, Wedegaertner T, Hake KD, Zhang JF (2021b) Interactions between cotton genotypes and Fusarium wilt race 4 isolates from Texas and resistance evaluation in cotton. Crop Sci 61:1809–1825

    CAS  Google Scholar 

  • Zhu Y, Thyssen GN, Abdelraheem A, Teng Z, Fang DD, Jenkins JN, McCarty JC Jr, Wedegaertner T, Hake K, Zhang JF (2021c) A GWAS identified a major QTL for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a MAGIC population of Upland cotton and a meta-analysis of QTLs for Fusarium wilt resistance. Theor Appl Genet (submitted)

Download references

Funding

This research work was supported by Cotton Incorporated (grant numbers 12-257 and 21-076).

Author information

Authors and Affiliations

Authors

Contributions

JZ and JY conceived and designed the study, and drafted the manuscript. AA and YZ performed the phenotyping experiment and analyzed the data. JM developed SNP markers and performed QTL analysis. JD and TW participated in the study and revised the manuscript. TW and HH supported the study. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jinfa Zhang or Jiwen Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Abdelraheem, A., Ma, J. et al. Mapping of dynamic QTLs for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a backcross inbred line population of Upland cotton. Mol Genet Genomics 297, 319–332 (2022). https://doi.org/10.1007/s00438-021-01846-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01846-2

Keywords

Navigation