Skip to main content

Advertisement

Log in

Disease association of human tumor suppressor genes

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The multifactorial disease, cancer, frequently emerges due to perturbations in tumor suppressor genes (TSGs). However, a growing number of noncanonical target genes of TSGs and the highly interconnected nature of the human interactome reveal that the functions of TSGs are not limited to cancer-specific events. The various functions of TSGs lead to the assumption that cancer is linked with other human disorders. Therefore, a disease–gene association network of TSGs (TSDN) was constructed by integrating protein–protein interaction networks of TSGs (TSN) with Morbid Map in Online Mendelian Inheritance in Man. The TSDN revealed links between TSGs and 22 different human disorders including cancer and indicated disease–disease associations. In addition, high-density functional protein clusters in the TSN showed cohesive and overlapping disease–TSG associations, which proved the prevalent role of TSGs in various human diseases beyond cancer. The presence of overlapping disease–gene modules and disease–disease associations via the TSN demonstrated that other diseases can serve as possible roots of the life-threatening disease cancer. Therefore, a disease association map of TSGs could be a promising tool for exploring intricate relationships between cancer and other diseases for the early prediction of cancer and the understanding of disease etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Datasets used in this article are available in supplementary information.

References

  • Amberger J, Bocchini C, Hamosh A (2011) A new face and new challenges for Online Mendelian inheritance in man (OMIM(R)). Hum Mutat 32:564–567

    Article  PubMed  Google Scholar 

  • Aylon Y, Oren M (2011) New plays in the p53 theater. Curr Opin Genet Dev 21:86–92

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf 4:2

    Article  Google Scholar 

  • Bader GD, Betel D, Hogue CW (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31:248–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Ray S, Mukhopadhyay A, Maulik U (2015) A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions. Brief Bioinform 16:830–851

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL (2016) The scale-free property. Network Science (Cambridge University Press), pp 113–163

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37:D885–D890

    Article  CAS  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for exploring and manipulating networks. In: International AAAI conference on weblogs and social media: ICWSM, San Jose, California

  • Chen L, Guo D (2017) The functions of tumor suppressor PTEN in innate and adaptive immunity. Cell Mol Immunol 14:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  • Duex JE, Swain KE, Dancik GM, Paucek RD, Owens C, Churchill MEA, Theodorescu D (2018) Functional impact of chromatin remodeling gene mutations and predictive signature for therapeutic response in bladder cancer. Mol Cancer Res 16:69–77

    Article  CAS  PubMed  Google Scholar 

  • Erdős P, Rényi A (1959) On random graphs. Publ Math 6:290–297

    Google Scholar 

  • Feldman I, Rzhetsky A, Vitkup D (2008) Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci USA 105:4323–4328

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, Day F, Li S, Tsui C, Lipton L, Desai J, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Zhu HJ, Mariadason JM, Burgess AW, Busam D, Zhao Q, Strausberg RL, Gibbs P, Sieber OM (2013) SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res 73:725–735

    Article  CAS  PubMed  Google Scholar 

  • Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783

    Article  CAS  PubMed  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA (2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 30:52–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalili M, Salehzadeh-Yazdi A, Gupta S, Wolkenhauer O, Yaghmaie M, Resendis-Antonio O, Alimoghaddam K (2016) Evolution of centrality measurements for the detection of essential proteins in biological networks. Front Physiol 7:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ES, Wang JY (2010) Targeting the RB-pathway in cancer therapy. Clin Cancer Res 16:1094–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wu A, Pellegrini M, Wang X (2015) Integrative analysis of human protein, function and disease networks. Sci Rep 5:14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liyasova MS, Ma K, Lipkowitz S (2015) Molecular pathways: cbl proteins in tumorigenesis and antitumor immunity-opportunities for cancer treatment. Clin Cancer Res 21:1789–1794

    Article  CAS  PubMed  Google Scholar 

  • Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabasi AL (2015) Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347:1257601

  • Mersch J, Jackson MA, Park M, Nebgen D, Peterson SK, Singletary C, Arun BK, Litton JK (2015) Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121:269–275

    Article  CAS  PubMed  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  • Mora A, Donaldson IM (2011) iRefR: an R package to manipulate the iRefIndex consolidated protein interaction database. BMC Bioinf 12:455

    Article  Google Scholar 

  • Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    Article  CAS  PubMed  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33:416–421

    Article  CAS  PubMed  Google Scholar 

  • Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB (2017) Cancerous perturbations within the ERK, PI3 K/Akt, and Wnt/beta-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol BioSyst 13:830–840

    Article  CAS  PubMed  Google Scholar 

  • Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, Gandhi TK, Chandrika KN, Deshpande N, Suresh S, Rashmi BP, Shanker K, Padma N, Niranjan V, Harsha HC, Talreja N, Vrushabendra BM, Ramya MA, Yatish AJ, Joy M, Shivashankar HN, Kavitha MP, Menezes M, Choudhury DR, Ghosh N, Saravana R, Chandran S, Mohan S, Jonnalagadda CK, Prasad CK, Kumar-Sinha C, Deshpande KS, Pandey A (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 32:D497–D501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson E, Koller D, Battle A, Mostafavi S, Ardlie KG, Getz G, Wright FA, Kellis M, Volpi S, Dermitzakis ET (2015) Sharing and specificity of co-expression networks across 35 human tissues. PLoS Comput Biol 11:e1004220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman K, Damaraju N, Joshi GK (2014) The organisational structure of protein networks: revisiting the centrality-lethality hypothesis. Syst Synth Biol 8:73–81

    Article  PubMed  Google Scholar 

  • Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinf 9:405

    Article  CAS  Google Scholar 

  • Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning Y, Hodges L, Gursky A, Siddiqui J, Tomlins SA, Roychowdhury S, Pienta KJ, Kim SY, Roberts JS, Rae JM, Van Poznak CH, Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan AM (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45:1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  CAS  PubMed  Google Scholar 

  • Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21:4205–4208

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF (2007) A new method to measure the semantic similarity of GO terms. Bioinformatics 23:1274–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yang C, Zhang X, Li X (2018) Characterizing genomic differences of human cancer stratified by the TP53 mutation status. Mol Genet Genomics 293:737–746

    Article  CAS  PubMed  Google Scholar 

  • Ward CL, Boggio KJ, Johnson BN, Boyd JB, Douthwright S, Shaffer SA, Landers JE, Glicksman MA, Bosco DA (2014) A loss of FUS/TLS function leads to impaired cellular proliferation. Cell Death Dis 5:e1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291

  • Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22:2800–2805

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26:976–978

    Article  CAS  PubMed  Google Scholar 

  • Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G (2002) MINT: a molecular INTeraction database. FEBS Lett 513:135–140

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fan H, Xu J, Xiao Y, Xu Y, Li Y, Li X (2013) Network analysis reveals functional cross-links between disease and inflammation genes. Sci Rep 3:3426

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Menche J, Barabasi AL, Sharma A (2014) Human symptoms-disease network. Nat Commun 5:4212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Mr.Kuntal Bhusan (Bio-Sciences R&D Division, TCS, Pune, India) for discussion regarding the statistical analysis of networks, Shiv Prasad (Software developer, Param.ai, Hyderabad, India) for assistance in writing the code in R, and Dr Urmila Saxena (NIT Warangal) for the critically reading of the manuscript and her constructive suggestion. I also thank the National Institute of Technology, Warangal for providing computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Bikas Das.

Ethics declarations

Conflict of interest

The author declares he has no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Communicated by S. Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.B. Disease association of human tumor suppressor genes. Mol Genet Genomics 294, 931–940 (2019). https://doi.org/10.1007/s00438-019-01557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-019-01557-9

Keywords

Navigation