Skip to main content
Log in

ACTN3 is associated with children’s physical fitness in Han Chinese

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The ACTN3 gene locates on 11q13-q14 and encodes the α-actinin-3 protein, which is only expressed in human skeletal muscle and influenced muscle function and metabolism. The previous studies reported that SNP rs1815739 is associated with elite power athletes’ performance. In this study, we investigated the association between five SNPs within the ACTN3 gene and Chinese children physical fitness. We recruited 2244 Han Chinese children participants, and measured their 25-m run, stand broad jump, 10-m shuttle run, handgrip, BMI (calculated by weight and height) data. SNPs rs1671064, rs2275998, rs2290463, rs10791881, and rs1815739 of ACTN3 gene were genotyped and analyzed in five physical fitness data. QTL analysis on genotype and physical fitness data was carried out in all samples. Furthermore, a dichotomous division of samples into an overweight group (543) and a normal group (1701) was used for an association study of overweight. In the QTL analysis, we found rs2290463 was significantly associated with stand broad jump (corrected P value = 0.009, beta = 2.692). After added age and gender as covariates in the regression test, the association became more significant (P value = 5.80 × 10− 5, corrected P value = 4.06 × 10− 4); when we used BMI as a covariate, the association still existed (P value = 4.65 × 10− 4, corrected P value = 0.001). In the association study of overweight, rs2275998 was found to be significant (OR, 95% CI = 0.733 [0.6–0.895]; Pallele = 0.011, Pgenotype = 0.024) after the Bonferroni correction, and the association did not change much after a further correction for gender, age, and stand broad jump performance. Our results showed that common variants in ACTN3 are significantly associated with both stand broad jump performance and overweight in Han Chinese children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, Rogozkin VA (2013) The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J Physiol Sci 63:79–85

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57(1):289–300

    Google Scholar 

  • Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C (2009) The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc 41:35–73

    Article  CAS  PubMed  Google Scholar 

  • Cadenas-Sanchez C, Martinez-Tellez B, Sanchez-Delgado G, Mora-Gonzalez J, Castro-Pinero J, Lof M, Ruiz JR, Ortega FB (2016) Assessing physical fitness in preschool children: feasibility, reliability and practical recommendations for the PREFIT battery. J Sci Med Sport 19:910–915

    Article  PubMed  Google Scholar 

  • Chiu LL, Chen TW, Hsieh SS, Hsieh LL (2012) ACE I/D, ACTN3 R577X, PPARD T294C and PPARGC1A Gly482Ser polymorphisms and physical fitness in Taiwanese late adolescent girls. J Physiol Sci 62:115–121

    Article  CAS  PubMed  Google Scholar 

  • de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • de Bakker PI, Burtt NP, Graham RR, Guiducci C, Yelensky R, Drake JA, Bersaglieri T, Penney KL, Butler J, Young S, Onofrio RC, Lyon HN, Stram DO, Haiman CA, Freedman ML, Zhu X, Cooper R, Groop L, Kolonel LN, Henderson BE, Daly MJ, Hirschhorn JN, Altshuler D (2006) Transferability of tag SNPs in genetic association studies in multiple populations. Nat Genet 38:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Deschamps CL, Connors KE, Klein MS, Johnsen VL, Shearer J, Vogel HJ, Devaney JM, Gordish-Dressman H, Many GM, Barfield W, Hoffman EP, Kraus WE, Hittel DS (2015) The ACTN3 R577X polymorphism is associated with cardiometabolic fitness in healthy young adults. PLoS One 10:e0130644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djarova T, Watson G, Basson A, Grace J, Cloete J, Ramakoaba A (2011) ACTN3 and TNF gene polymorphism association with C-reactive protein, uric acid, lactate and physical characteristics in young African cricket players. Afr J Biochem Res 5(1):22–27

    CAS  Google Scholar 

  • Doring FE, Onur S, Geisen U, Boulay MR, Perusse L, Rankinen T, Rauramaa R, Wolfahrt B, Bouchard C (2010) ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci 28:1355–1359

    Article  PubMed  Google Scholar 

  • Frey N, Olson EN (2002) Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem 277:13998–14004

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci USA 97:14632–14637

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Ahn N, Park J, Koh J, Jung S, Kim S, Moon S (2016) Association of angiotensin-converting enzyme I/D and alpha-actinin-3 R577X genotypes with metabolic syndrome risk factors in Korean children. Obes Res Clin Pract 10(Suppl 1):S125–S132

    Article  PubMed  Google Scholar 

  • Lee FX, Houweling PJ, North KN, Quinlan KG (2016) How does alpha-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the ‘gene for speed’. Biochim Biophys Acta 1863:686–693

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis. Cell Res 19:519–523. http://analysis.bio-x.cn

  • Li H, Zong XN, Ji CY, Mi J (2010) Body mass index cut-offs for overweight and obesity in Chinese children and adolescents aged 2–18 years. Zhonghua Liu Xing Bing Xue Za Zhi 31:616–620

    CAS  PubMed  Google Scholar 

  • MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N, North KN (2008) An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet 17:1076–1086

    Article  CAS  Google Scholar 

  • Martin NW, Medland SE, Verweij KJ, Lee SH, Nyholt DR, Madden PA, Heath AC, Montgomery GW, Wright MJ, Martin NG (2011) Educational attainment: a genome wide association study in 9538 Australians. PLoS One 6:e20128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran CN, Yang N, Bailey ME, Tsiokanos A, Jamurtas A, MacArthur DG, North K, Pitsiladis YP, Wilson RH (2007) Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet 15:88–93

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Obeid J, Timmons BW (2011) Reliability of fitness measures in 3- to 5-year-old children. Pediatr Exerc Sci 23:250–260

    Article  PubMed  Google Scholar 

  • Ortega FB, Cadenas-Sanchez C, Sanchez-Delgado G, Mora-Gonzalez J, Martinez-Tellez B, Artero EG, Castro-Pinero J, Labayen I, Chillon P, Lof M, Ruiz JR (2015) Systematic review and proposal of a field-based physical fitness-test battery in preschool children: the PREFIT battery. Sports Med 45:533–555

    Article  PubMed  Google Scholar 

  • Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, Artioli GG, Guilherme JP, Lancha AH Jr, Gineviciene V, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, Muniesa CA, Kouvatsi A, Massidda M, Calo CM, Garton F, Houweling PJ, Wang G, Austin K, Druzhevskaya AM, Astratenkova IV, Ahmetov II, Bishop DJ, North KN, Eynon N (2016) ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genom 17:285

    Article  CAS  Google Scholar 

  • Quinlan KG, Seto JT, Turner N, Vandebrouck A, Floetenmeyer M, Macarthur DG, Raftery JM, Lek M, Yang N, Parton RG, Cooney GJ, North KN (2010) Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet 19:1335–1346

    Article  CAS  PubMed  Google Scholar 

  • Sarzynski MA, Rankinen T, Sternfeld B, Grove ML, Fornage M, Jacobs DR Jr, Sidney S, Bouchard C (2010) Association of single-nucleotide polymorphisms from 17 candidate genes with baseline symptom-limited exercise test duration and decrease in duration over 20 years: the Coronary Artery Risk Development in Young Adults (CARDIA) fitness study. Circ Cardiovasc Genet 3:531–538

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Li Z, Chen J, Song Z, Zhou Z, Shi Y (2016) SHEsisPlus, a toolset for genetic studies on polyploid species. Sci Rep 6:24095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98

    Article  CAS  Google Scholar 

  • Takada F, Vander Woude DL, Tong HQ, Thompson TG, Watkins SC, Kunkel LM, Beggs AH (2001) Myozenin: an alpha-actinin- and gamma-filamin-binding protein of skeletal muscle Z lines. Proc Natl Acad Sci USA 98:1595–1600

    CAS  PubMed  Google Scholar 

  • Thomaes T, Thomis M, Onkelinx S, Fagard R, Matthijs G, Buys R, Schepers D, Cornelissen V, Vanhees L (2011) A genetic predisposition score for muscular endophenotypes predicts the increase in aerobic power after training: the CAREGENE study. BMC Genet 12:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, Thomis MA (2007) ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genom 32:58–63

    Article  CAS  Google Scholar 

  • Walsh S, Liu D, Metter EJ, Ferrucci L, Roth SM (2008) ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol (1985) 105:1486–1491

    Article  Google Scholar 

  • Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Garton F, North K (2009) Alpha-actinin-3 and performance. Med Sport Sci 54:88–101

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Shen X, Wang Y, Voisin S, Cai G, Fu Y, Xu W, Eynon N, Bishop DJ, Yan X (2017) ACTN3 R577X gene variant is associated with muscle-related phenotypes in elite chinese sprint/power athletes. J Strength Cond Res 31:1107–1115

    Article  PubMed  Google Scholar 

  • Yvert T, Santiago C, Santana-Sosa E, Verde Z, Gomez-Gallego F, Lopez-Mojares LM, Perez M, Garatachea N, Lucia A (2015) Physical-capacity-related genetic polymorphisms in children with cystic fibrosis. Pediatr Exerc Sci 27:102–112

    Article  PubMed  Google Scholar 

  • Zhao G, Quan M, Su L, Zhang H, Zhang J, Zhang J, Fang H, Cao ZB, Zhu Z, Niu Z, Wang R, Chen P (2017) Effect of physical activity on cognitive development: protocol for a 15-year longitudinal follow-up study. Biomed Res Int 2017:8568459

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for the contribution of all participants to this project. The study was designed and inspected by YS, SC, YZ, DL, DP, ZW, and JC and accessed financial support; sample collection and phenotyping was by JJ, WZ, YX, YS, DK, DL, and XW; QZ, YC, JC, JJ, YX, WZ, and YS performed sample processing. QZ and YC conducted genotyping and DW made initial data conversion; QZ and YC conducted statistical analysis; QZ analyzed and interpreted the data and drafted the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyong Shi.

Ethics declarations

Conflict of interest

This project was supported by the 973 Program (2015CB559100), the National Key R&D Program of China (2016YFC0903402), the Natural Science Foundation of China (31325014, 81421061, 81130022, 81701321, 31770800, and 81571329), the Program of Shanghai Subject Chief Scientist (15XD1502200), the National Program for Support of Top-Notch Young Professionals to YS, the ‘Shu Guang’ project supported by the Shanghai Municipal Education Commission and Shanghai Education Development Foundation (12SG17), Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (20161414), the China Postdoctoral Science Foundation (2016M600334). We thank all the participants in the study. The authors report no biomedical financial interests or potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Cao, Y., Chen, J. et al. ACTN3 is associated with children’s physical fitness in Han Chinese. Mol Genet Genomics 294, 47–56 (2019). https://doi.org/10.1007/s00438-018-1485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1485-7

Keywords

Navigation