Skip to main content
Log in

A comparison of CRISPR/Cas9 and siRNA-mediated ALDH2 gene silencing in human cell lines

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Gene knockdown and knockout using RNAi and CRISPR/Cas9 allow for efficient evaluation of gene function, but it is unclear how the choice of technology can influence the results. To compare the phenotypes obtained using siRNA and CRISPR/Cas9 technologies, aldehyde dehydrogenase 2 (ALDH2) was selected as an example. In this study, we constructed one HepG2 cell line with a homozygous mutation in the fifth exon of ALDH2 (ALDH2-KO1 cell) using the eukaryotic CRISPR/Cas9 expression system followed by the limited dilution method and one HepG2 cell line with different mutations in the ALDH2 gene (ALDH2-KO2 cell) using the lentivirus CRISPR/Cas9 system. Additionally, one ALDH2-knockdown (KD) HepG2 cell line was created using siRNA. The reproducibility of these methods was further verified in the HEK293FT cell line. We found that the mRNA expression level of ALDH2 was significantly decreased and the protein expression level of ALDH2 was completely abolished in the ALDH2-KO cell lines, but not in ALDH2-KD cells. Furthermore, the functional activity of ALDH2 was also markedly disrupted in the two ALDH2-KO cell lines compared with ALDH2-KD and wild-type cells. The lack of ALDH2 expression mediated by CRIPSR/Cas9 resulted in a more dramatic increase in the cellular susceptibility to chemical-induced reactive oxygen species generation, cytotoxicity, apoptosis, and inflammation, especially at low concentrations compared with ALDH2-KD and WT cells. Therefore, we consider the gene knockout cell line created by CRISPR/Cas9 to be a more useful tool for identifying the function of a gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brennan P, Lewis S, Hashibe M, Bell DA, Boffetta P, Bouchardy C, Caporaso N, Chen C, Coutelle C, Diehl SR, Hayes RB, Olshan AF, Schwartz SM, Sturgis EM, Wei Q, Zavras AI, Benhamou S (2004) Pooled analysis of alcohol dehydrogenase genotypes and head and neck cancer: a HuGE review. Am J Epidemiol 159:1–16

    Article  PubMed  Google Scholar 

  • Chen Z, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA 99:8306–8311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama KI, Hess DT, Stamler JS (2005) An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci USA 102:12159–12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D (2014) Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 94:1–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Cruz LA, Mochly-Rosen D (2015) Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo. Proc Natl Acad Sci USA 112:3074–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortinez G, Sapag A, Israel Y (2009) RNA interference against aldehyde dehydrogenase-2: development of tools for alcohol research. Alcohol 43:97–104

    Article  CAS  PubMed  Google Scholar 

  • Flynn RA, Zhang QC, Spitale RC, Lee B, Mumbach MR, Chang HY (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat Protoc 11:273–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JM, Liu AJ, Zang P, Dong WZ, Ying L, Wang W, Xu P, Song XR, Cai J, Zhang SQ, Duan JL, Mehta JL, Su DF (2013) ALDH2 protects against stroke by clearing 4-HNE. Cell Res 23:915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagstrom H, Nasr P, Ekstedt M, Kechagias S, Onnerhag K, Nilsson E, Rorsman F, Sheikhi R, Marschall HU, Hultcrantz R, Stal P (2017) Low to moderate lifetime alcohol consumption is associated with less advanced stages of fibrosis in non-alcoholic fatty liver disease. Scand J Gastroenterol 52:159–165

    Article  PubMed  Google Scholar 

  • Isse T, Oyama T, Matsuno K, Uchiyama I, Kawamoto T (2005) Aldehyde dehydrogenase 2 activity affects symptoms produced by an intraperitoneal acetaldehyde injection, but not acetaldehyde lethality. J Toxicol Sci 30:315–328

    Article  CAS  PubMed  Google Scholar 

  • Jyothi K, Kalyani D, Nachiappan V (2012) Effect of acute exposure of N,N-dimethylformamide, an industrial solvent on lipid peroxidation and antioxidants in liver and kidney of rats. Indian J Biochem Biophys 49:279–284

    CAS  PubMed  Google Scholar 

  • Kitagawa K, Kawamoto T, Kunugita N, Tsukiyama T, Okamoto K, Yoshida A, Nakayama K, Nakayama K (2000) Aldehyde dehydrogenase (ALDH) 2 associates with oxidation of methoxyacetaldehyde; in vitro analysis with liver subcellular fraction derived from human and Aldh2 gene targeting mouse. FEBS Lett 476:306–311

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Guo R, Yu L, Zhang Y, Ren J (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 32:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan CA, Parajuli B, Buchman CD, Dria K, Hurley TD (2015) N,N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes. Chem Biol Interact 234:18–28

    Article  CAS  PubMed  Google Scholar 

  • Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52:735–746

    Article  CAS  PubMed  Google Scholar 

  • Oniki K, Morita K, Watanabe T, Kajiwara A, Otake K, Nakagawa K, Sasaki Y, Ogata Y, Saruwatari J (2016) The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease. Nutr Diabetes 6:e210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama T, Isse T, Ogawa M, Muto M, Uchiyama I, Kawamoto T (2007) Susceptibility to inhalation toxicity of acetaldehyde in Aldh2 knockout mice. Front Biosci 12:1927–1934

    Article  CAS  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013a) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013b) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez AC, Li C, Andrews BA, Asenjo JA, Samulski RJ (2017) AAV gene therapy for alcoholism: inhibition of mitochondrial Aldehyde dehydrogenase enzyme expression in Hepatoma cells. Hum Gene Ther

  • Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheers EM, Ekwall B, Dierickx PJ (2001) In vitro long-term cytotoxicity testing of 27 MEIC chemicals on Hep G2 cells and comparison with acute human toxicity data. Toxicol In Vitro 15:153–161

    Article  CAS  PubMed  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Wang C, Han S, Wang Z, Dong Z, Zhao X, Wang P, Zhu H, Sun X, Ma X, Zhu H, Zou Y, Hu K, Ge J, Sun A (2017) Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta 1863:1912–1918

    Article  CAS  PubMed  Google Scholar 

  • Stagos D, Chen Y, Brocker C, Donald E, Jackson BC, Orlicky DJ, Thompson DC, Vasiliou V (2010) Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos 38:1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueshima Y, Matsuda Y, Tsutsumi M, Takada A (1993) Role of the aldehyde dehydrogenase-1 isozyme in the metabolism of acetaldehyde. Alcohol Alcohol Suppl 1B:15–19

    Article  Google Scholar 

  • Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng Z, Suda M, Ohtani K, Mei N, Kawamoto T, Nakajima T, Wang RS (2013) Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice. Toxicology 311:107–114

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Zhou X, Wang J, Zhang W, Zheng H, Lu W, Yuan J (2012) MEHP-induced oxidative DNA damage and apoptosis in HepG2 cells correlates with p53-mediated mitochondria-dependent signaling pathway. Food Chem Toxicol 50:2424–2431

    Article  CAS  PubMed  Google Scholar 

  • Yoval-Sanchez B, Rodriguez-Zavala JS (2012) Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 25:722–729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nature Research Editing Service for its linguistic assistance during the preparation of this manuscript.

Funding

This study was funded by the National Natural Science Foundations of China (Grant numbers: 81273098, 81673140, 81402715), Science and Technology Planning Project of Guangzhou City (Grant number: 201707010078), Young teacher training Program of Sun Yat-sen University (Grant numbers: 15ykpy06, 14ykpy06), A Major Scientific Project of NSFC (Grant number: 91543208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiumei Xing or Qing Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7409 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Guo, T., Jiang, H. et al. A comparison of CRISPR/Cas9 and siRNA-mediated ALDH2 gene silencing in human cell lines. Mol Genet Genomics 293, 769–783 (2018). https://doi.org/10.1007/s00438-018-1420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1420-y

Keywords

Navigation