Skip to main content

Advertisement

Log in

ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β-thalassaemia

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Foetal haemoglobin (HbF) plays a dominant role in ameliorating the morbidity and mortality of β-thalassaemia. A better understanding of the loci and genes involved in HbF expression would be beneficial for the treatment of β-thalassaemia major. However, the genes associated with HbF expression remain largely unknown. In this study, we first explored large-scale data sets and examined the human genome for evidence of positive natural selection to screen out single nucleotide polymorphisms (SNPs). A genetic analysis of HbF levels was conducted in a Chinese cohort of patients with β-thalassaemia to confirm the bioinformatics results. A total of 1141 subjects with β-thalassaemia were recruited. The results showed that the SNP rs11759328 in the ARHGAP18 gene was significantly associated with HbF levels (Ρ = 5.1 × 10−4). ARHGAP18 belongs to the RhoGAP family and controls angiogenesis, cellular morphology and motility. Second, after determining that ARHGAP18 was highly expressed in the human K562 cell line, we used lentiviral-mediated small interfering RNA to knock down ARHGAP18 expression and subsequently assessed cell proliferation and apoptosis using cell proliferation assays and flow cytometry, respectively. ARHGAP18 downregulation in K562 cells significantly increased HBG1/2 expression and apoptosis, but proliferation was not significantly affected in vitro. Our data suggest that ARHGAP18, which was located by the SNP rs11759328 via positive selection, plays a potential role in regulating HbF expression in β-thalassaemia and may be a promising therapeutic target. Knockout studies of ARHGAP18 warrant further investigation into its aetiology in HbF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, Chui DH, Steinberg MH (2011) Fetal hemoglobin in sickle cell anemia. Blood 118:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinsheye I, Solovieff N, Ngo D, Malek A, Sebastiani P, Steinberg MH, Chui DH (2012) Fetal hemoglobin in sickle cell anemia: molecular characterization of the unusually high fetal hemoglobin phenotype in African Americans. Am J Hematol 87:217–219

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar P, Purvis S, Barron-Casella E, DeBaun MR, Casella JF, Arking DE, Keefer JR (2011) Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J Hum Genet 56:316–323

    Article  CAS  PubMed  Google Scholar 

  • Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang GH, Lay AJ, Ting KK, Zhao Y, Coleman PR, Powter EE, Formaz-Preston A, Jolly CJ, Bower NI, Hogan BM, Rinkwitz S, Becker TS, Vadas MA, Gamble JR (2014) ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases 5:1–15

    Article  CAS  PubMed  Google Scholar 

  • Frame JM, Fegan KH, Conway SJ, McGrath KE, Palis J (2015) Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells 34:431–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Sun W, Wang H, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Yakub I, Birren BW, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L’Archeveque P, Bellemare G, Saeki K, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  • Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 2:2–12. doi:10.1002/0471142905.hg0212s60

    Google Scholar 

  • Gambari R, Fibach E (2007) Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem 14:199–212

    Article  CAS  PubMed  Google Scholar 

  • Hahn CK, Lowrey CH (2014) Induction of fetal hemoglobin through enhanced translation efficiency of gamma-globin mRNA. Blood 124:2730–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay D, Hughes JR, Babbs C, Davies JOJ, Graham BJ, Hanssen L, Kassouf MT, Marieke Oudelaar AM, Sharpe JA, Suciu MC, Telenius J, Williams R, Rode C, Li PS, Pennacchio LA, Sloane-Stanley JA, Ayyub H, Butler S, Sauka-Spengler T, Gibbons RJ, Smith AJH, Wood WG, Higgs DR (2016) Genetic dissection of the alpha-globin super-enhancer in vivo. Nat Genet 48:895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Lin W, Luo J (2011) Influences of genetic variation on fetal hemoglobin. Pediatr Hematol Oncol 28:708–717

    Article  CAS  PubMed  Google Scholar 

  • He Y, Chen P, Lin W, Luo J (2012a) Analysis of rs4671393 polymorphism in hemoglobin E/beta-thalassemia major in Guangxi Province of China. J Pediatr Hematol Oncol 34:323–324

    Article  CAS  PubMed  Google Scholar 

  • He Y, Chen P, Lin W, Luo J (2012b) Analysis of the rs35959442 polymorphism in Hb E/beta-thalassemia in Guangxi Province of the Republic of China. Hemoglobin 36:166–169

    Article  CAS  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Lettre G, Sankaran VG, Bezerra MA, Araujo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA 105:11869–11874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhang X, Yu L, Cai R, Ma X, Zheng C, Zhou Y, Liu Q, Wei X, Lin L, Yan T, Huang J, Mohandas N, An X, Xu X (2014) KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of beta-thalassemia. Blood 124:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo XJ, Mattheisen M, Li M, Huang L, Rietschel M, Borglum AD, Als TD, van den Oord EJ, Aberg KA, Mors O, Mortensen PB, Luo Z, Degenhardt F, Cichon S, Schulze TG, Nothen MM, Su B, Zhao Z, Gan L, Yao YG (2015) Systematic integration of brain eQTL and GWAS Identifies ZNF323 as a novel schizophrenia risk gene and suggests recent positive selection based on compensatory advantage on pulmonary function. Schizophr Bull 41:1294–1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda M, Hasegawa H, Hyodo T, Ito S, Asano E, Yuang H, Funasaka K, Shimokata K, Hasegawa Y, Hamaguchi M, Senga T (2011) ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading, and motility. Mol Biol Cell 22:3840–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makani J, Menzel S, Nkya S, Cox SE, Drasar E, Soka D, Komba AN, Mgaya J, Rooks H, Vasavda N, Fegan G, Newton CR, Farrall M, Thein SL (2011) Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood 117:1390–1392

    Article  CAS  PubMed  Google Scholar 

  • Nash D, Nair S, Mayxay M, Newton PN, Guthmann JP, Nosten F, Anderson TJ (2005) Selection strength and hitchhiking around two anti-malarial resistance genes. Proc Biol Sci 272:1153–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuinoon M, Makarasara W, Mushiroda T, Setianingsih I, Wahidiyat PA, Sripichai O, Kumasaka N, Takahashi A, Svasti S, Munkongdee T, Mahasirimongkol S, Peerapittayamongkol C, Viprakasit V, Kamatani N, Winichagoon P, Kubo M, Nakamura Y, Fucharoen S (2010) A genome-wide association identified the common genetic variants influence disease severity in beta0-thalassemia/hemoglobin E. Hum Genet 127:303–314

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Relvas L, Bento C, Abade A, Ribeiro ML, Manco L (2015) Polymorphic variations influencing fetal hemoglobin levels: association study in beta-thalassemia carriers and in normal individuals of Portuguese origin. Blood Cells Mol Dis 54:315–320

    Article  CAS  PubMed  Google Scholar 

  • Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330:1639–1644

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj T, Shulman JM, Keenan BT, Chibnik LB, Evans DA, Bennett DA, Stranger BE, De Jager PL (2012) Alzheimer disease susceptibility loci: evidence for a protein network under natural selection. Am J Hum Genet 90:720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao N, Lee YF, Ge R (2015) Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin 36:1177–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rund D, Rachmilewitz E (2005) Beta-thalassemia. N Engl J Med 353:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Rutherford TR, Clegg JB, Weatherall DJ (1979) K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 280:164–165

    Article  CAS  PubMed  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837

    Article  CAS  PubMed  Google Scholar 

  • Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES (2006) Positive natural selection in the human lineage. Science 312:1614–1620

    Article  CAS  PubMed  Google Scholar 

  • Sham PC, Purcell SM (2014) Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet 15:335–346

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Cui S, Engel JD, Tanabe O (2013) Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med 19:291–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slukvin II (2013) Deciphering the hierarchy of angiohematopoietic progenitors from human pluripotent stem cells. Cell Cycle 12:720–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Cheng S, Zhu Y, Zhang P, Liu N, Xu T, Sun C, Lv Y (2016) Identification of PRKDC (protein kinase, DNA-activated, catalytic polypeptide) as an essential gene for colorectal cancer (CRCs) cells. Gene 584:90–96

    Article  CAS  PubMed  Google Scholar 

  • Thein SL (2005) Pathophysiology of beta thalassemia—a guide to molecular therapies. Hematol Am Soc Hematol Educ Program 2005:31–37

    Google Scholar 

  • Thein SL (2012) The emerging role of fetal hemoglobin induction in non-transfusion-dependent thalassemia. Blood Rev 26(Suppl 1):S35–S39

    Article  CAS  PubMed  Google Scholar 

  • Thein SL, Menzel S (2009) Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol 145:455–467

    Article  CAS  PubMed  Google Scholar 

  • Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M (2007) Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA 104:11346–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Buul JD, Geerts D, Huveneers S (2014) Rho GAPs and GEFs: controling switches in endothelial cell adhesion. Cell Adhes Migr 8:108–124

    Article  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72

    Article  PubMed  PubMed Central  Google Scholar 

  • Voit RA, Hendel A, Pruett-Miller SM, Porteus MH (2014) Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 42:1365–1378

    Article  CAS  PubMed  Google Scholar 

  • Weatherall DJ (1997) The thalassaemias. BMJ 314:1675–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk M, Martin JE (2012) Fetal haemopoiesis marking low-grade urinary bladder cancer. Br J Cancer 107:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk M, Martin JE, Reinus C (2006) Development of fetal haemoglobin-blood cells (F cells) within colorectal tumour tissues. J Clin Pathol 59:598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk M, Martin JE, Nowicki M (2007) Foetal haemoglobin-blood cells (F-cells) as a feature of embryonic tumours (blastomas). Br J Cancer 97:412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood ET, Stover DA, Slatkin M, Nachman MW, Hammer MF (2005) The beta-globin recombinational hotspot reduces the effects of strong selection around HbC, a recently arisen mutation providing resistance to malaria. Am J Hum Genet 77:637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102–R110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Chin K, Aerbajinai W, Trainor C, Gao P, Rodgers GP (2011a) Recombinant erythroid Kruppel-like factor fused to GATA1 up-regulates delta- and gamma-globin expression in erythroid cells. Blood 117:3045–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Ge D, Maia JM, Zhu M, Petrovski S, Dickson SP, Heinzen EL, Shianna KV, Goldstein DB (2011b) A genome-wide comparison of the functional properties of rare and common genetic variants in humans. Am J Hum Genet 88:458–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (No. 81360093) and Guangxi Key Laboratory of Thalassaemia Research (16-380-34). The authors would like to thank Professor Liang Rong (Department of Pediatrics-Neonatology, Baylor College of Medicine, Houston, Texas, USA) for helpful discussions regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the First Affiliated Hospital of Guangxi Medical University and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Luo, J., Chen, Y. et al. ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β-thalassaemia. Mol Genet Genomics 293, 207–216 (2018). https://doi.org/10.1007/s00438-017-1377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1377-2

Keywords

Navigation