Skip to main content
Log in

Whole genome comparative analysis of four Georgian grape cultivars

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Grapevine is the one of the most important fruit species in the world. Comparative genome sequencing of grape cultivars is very important for the interpretation of the grape genome and understanding its evolution. The genomes of four Georgian grape cultivars—Chkhaveri, Saperavi, Meskhetian green, and Rkatsiteli, belonging to different haplogroups, were resequenced. The shotgun genomic libraries of grape cultivars were sequenced on an Illumina HiSeq. Pinot Noir nuclear, mitochondrial, and chloroplast DNA were used as reference. Mitochondrial DNA of Chkhaveri closely matches that of the reference Pinot noir mitochondrial DNA, with the exception of 16 SNPs found in the Chkhaveri mitochondrial DNA. The number of SNPs in mitochondrial DNA from Saperavi, Meskhetian green, and Rkatsiteli was 764, 702, and 822, respectively. Nuclear DNA differs from the reference by 1,800,675 nt in Chkhaveri, 1,063,063 nt in Meskhetian green, 2,174,995 in Saperavi, and 5,011,513 in Rkatsiteli. Unlike mtDNA Pinot noir, chromosomal DNA is closer to the Meskhetian green than to other cultivars. Substantial differences in the number of SNPs in mitochondrial and nuclear DNA of Chkhaveri and Pinot noir cultivars are explained by backcrossing or introgression of their wild predecessors before or during the process of domestication. Annotation of chromosomal DNA of Georgian grape cultivars by MEGANTE, a web-based annotation system, shows 66,745 predicted genes (Chkhaveri—17,409; Saperavi—17,021; Meskhetian green—18,355; and Rkatsiteli—13,960). Among them, 106 predicted genes and 43 pseudogenes of terpene synthase genes were found in chromosomes 12, 18 random (18R), and 19. Four novel TPS genes not present in reference Pinot noir DNA were detected. Two of them—germacrene A synthase (Chromosome 18R) and (−) germacrene D synthase (Chromosome 19) can be identified as putatively full-length proteins. This work performs the first attempt of the comparative whole genome analysis of different haplogroups of Vitis vinifera cultivars. Based on complete nuclear and mitochondrial DNA sequence analysis, hypothetical phylogeny scheme of formation of grape cultivars is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA, Arnold C, Ergul A, Soylemezoğlu G, Uzun HI, Cabello F, Ibanez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Gorislavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez- Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15(12):3707–3714

    Article  CAS  PubMed  Google Scholar 

  • Beridze GI (1962) Les Vins de Georgie. Edition l'Etat Sabchota Sakartvelo, Tbilisi, Georgia

    Google Scholar 

  • Beridze T, Pipia I, Beck J, Hsu S-C, Gamkrelidze M, Gogniashvili M, Tabidze V, This P, Bacilieri R, Gotsiridze V, Glonti M, Schaal B (2011) Plastid DNA sequence diversity in a worldwide set of grapevine cultivars (Vitis vinifera L. subsp. vinifera). Bull Georgian Natl Acad Sci 5:98–103

    CAS  Google Scholar 

  • Beridze T, Pipia I, Beck J, Shih-Chung Hsu S-C, Gamkrelidze M, Gogniashvili M, Tabidze V, This P, Bacilieri R, Gotsiridze V, Glonti M, Schaal B (2014) Plastid DNA sequence diversity in a worldwide set of grapevine cultivars (Vitis vinifera L. subsp. vinifera). Acta horticulturae. In: Proceedings of 10th international conference on grapevine breeding and genetics, Geneva, New York, USA 1046, pp 609–614

  • Christensen AC (2013) Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol 5(6):1079–1086. doi:10.1093/gbe/evt069

    Article  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, BanksE DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Genova A, Miyasaka Almeida A, Muñoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7. doi:10.1186/1471-2229-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res Database Issue 44:D279–D285

    Article  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26(1):99–110. doi:10.1093/molbev/msn226

    Article  CAS  PubMed  Google Scholar 

  • Imazio S, Maghradze D, de Lorenzis G, Bacilieri R, Laucou V, This P, Scienza A, Failla O (2013) From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (Vitis vinifera L) germplasm. Tree Genet Genomes 9(3):641–658

    Article  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, ClepetCh Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, HugueneyPh Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Cr Del Fabbro, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, ChateletPh Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-B, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  CAS  PubMed  Google Scholar 

  • Ketskhoveli N, Ramishvili M, Tabidze D (1960) Georgian ampelography. English Translation Magradze D, Vashakidze L, Glonti T (eds) Tbilisi 2012

  • Li H (2011) Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27(5):718–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodhi MA, Ye G, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assay. BMC plant biol 10:226. http://www.biomedcentral.com/1471-2229/10/226

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell SM, Muehlbauer LK, Freedberg S (2016) Nuclear introgression without mitochondrial introgression in two turtle species exhibiting sex-specific trophic differentiation. Ecol Evol 6(10):3280–3288

    Article  PubMed  PubMed Central  Google Scholar 

  • Negrul AM (1946) Ampelography of USSR, vol I. Pishchepromizdat, Moscow (in Russian)

    Google Scholar 

  • Nevado B, Fazalova V, Backeljau T, Hanssens M, Verheyen E (2011) Repeated unidirectional introgression of nuclear and mitochondrial DNA between four congeneric Tanganyikan cichlids. Mol Biol Evol 28(8):2253–2267

    Article  CAS  PubMed  Google Scholar 

  • Numa H, Itoh T (2014) MEGANTE: a web-based system for integrated plan genome annotation. Plant Cell Physiol 55(1):e2. doi:10.1093/pcp/pct157

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Cabios Appl Note 12:357–358

    Article  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97

    Article  CAS  PubMed  Google Scholar 

  • Pipia I, Gogniashvili M, Tabidze V, Beridze T, Gamkrelidze M, Gotsiridze V, Melyan G, Musayev M, Salimov V, Beck JB, Schaal B (2012) Plastid DNA sequence diversity in wild grapevine samples (Vitis vinifera subsp. sylvestris) from the Caucasus region. Vitis 51(3):119–124

    CAS  Google Scholar 

  • Schaal B, Beck J, Hsu SC, Beridze T, Gamkrelidze M, Gogniashvili M, Pipia I, Tabidze V, This P, Bacilieri R, Gotsiridze V, Glonti M (2010a) Plastid DNA sequence diversity in a worldwide set of grapevine cultivars (Vitis vinifera L. subsp. sativa). in: Materials of the 33rd World congress on vine and wine, Tbilisi, p 8

  • Schaal B, Beck J, Hsu S-C, Beridze T, Gamkrelidze M, Gogniashvili M, Pipia I, Tabidze V, This P, Bacilieri R, Gotsiridze V, Glonti M (2010b) Plastid DNA sequence diversity in a worldwide set of grapevine cultivars (Vitis vinifera L. subsp. vinifera). In :10th international conference on grapevine breeding and genetics, Geneva, 1–5 Aug 2010

  • Tabidze V, Baramidze G, Pipia I, Gogniashvili M, Ujmajuridze L, Beridze T, Hernandez AG, Schaal B (2014) The complete chloroplast DNA sequence of eleven grape cultivars. Simultaneous resequencing methodology. J Int Sci Vigne Vin 48(2):99–109

    CAS  Google Scholar 

  • Touchman J (2010) Comparative genomics. Nat Educ Knowl 3(10):13

    Google Scholar 

  • Van Raamsdonk LWD, Smith MP, Sandbrink JM (1997) Introgression explains incongruence between nuclear and chloroplast DNA-based phylogenies in Allium section Cepa. Bot J Linn Soc 123:91–108

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattи L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synhtases are widely distributed in bacteria. Proc Natl Acad Sci USA 112(3):857–862

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Mr. Kakha Bendukidze via his Knowledge Fund, a funding organization of the Free University of Tbilisi and Agricultural University of Georgia. Mr. K. Bendukidze untimely passed away on 13 November 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengiz Beridze.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabidze, V., Pipia, I., Gogniashvili, M. et al. Whole genome comparative analysis of four Georgian grape cultivars. Mol Genet Genomics 292, 1377–1389 (2017). https://doi.org/10.1007/s00438-017-1353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1353-x

Keywords

Navigation