Skip to main content
Log in

Identification and characterisation of Short Interspersed Nuclear Elements in the olive tree (Olea europaea L.) genome

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Short Interspersed Nuclear Elements (SINEs) are nonautonomous retrotransposons in the genome of most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, SINE identification has been carried out only in a limited number of plant species. This lack of information is apparent especially in non-model plants whose genome has not been sequenced yet. The aim of this work was to produce a specific bioinformatics pipeline for analysing second generation sequence reads of a non-model species and identifying SINEs. We have identified, for the first time, 227 putative SINEs of the olive tree (Olea europaea), that constitute one of the few sets of such sequences in dicotyledonous species. The identified SINEs ranged from 140 to 362 bp in length and were characterised with regard to the occurrence of the tRNA domain in their sequence. The majority of identified elements resulted in single copy or very lowly repeated, often in association with genic sequences. Analysis of sequence similarity allowed us to identify two major groups of SINEs showing different abundances in the olive tree genome, the former with sequence similarity to SINEs of Scrophulariaceae and Solanaceae and the latter to SINEs of Salicaceae. A comparison of sequence conservation between olive SINEs and LTR retrotransposon families suggested that SINE expansion in the genome occurred especially in very ancient times, before LTR retrotransposon expansion, and presumably before the separation of the rosids (to which Oleaceae belong) from the Asterids. Besides providing data on olive SINEs, our results demonstrate the suitability of the pipeline employed for SINE identification. Applying this pipeline will favour further structural and functional analyses on these relatively unknown elements to be performed also in other plant species, even in the absence of a reference genome, and will allow establishing general evolutionary patterns for this kind of repeats in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F et al (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6:776–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Barghini E, Natali L, Giordani T, Cossu RM, Scalabrin S, Cattonaro F et al (2015a) LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 22:91–100

    Article  CAS  PubMed  Google Scholar 

  • Barghini E, Mascagni F, Natali L, Giordani T, Cavallini A (2015b) Analysis of the repetitive component and retrotransposon population in the genome of a marine angiosperm, Posidonia oceanica (L.) Delile. Mar Genom 24:397–404

    Article  Google Scholar 

  • Ben-David S, Yaakov B, Kashkush K (2013) Genome-wide analysis of Short Interspersed Nuclear Elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat. Plant J 76:201–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S, Ceccarelli M et al (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195

    Article  CAS  PubMed  Google Scholar 

  • Boeke JD (1997) LINEs and Alus—the polyA connection. Nature Genet 16:6–7

    Article  CAS  PubMed  Google Scholar 

  • Borodulina OR, Kramerov DA (1999) Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett 457:409–413

    Article  CAS  PubMed  Google Scholar 

  • Churakov G, Sadasivuni MK, Rosenbloom KR, Huchon D, Brosius J, Schmitz J (2010) Rodent evolution: back to the root. Mol Biol Evol 27:1315–1326

    Article  CAS  PubMed  Google Scholar 

  • Contento A, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (2002) Diversity of Olea genotypes and the origin of cultivated olives. Theor Appl Genet 104:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Copetti D, Zhang J, El Baidouri M, Gao D, Wang J, Barghini E et al (2015) RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genom 16:538

    Article  Google Scholar 

  • Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E et al (2016) Genome sequence of the olive tree, Olea europaea. GigaScience 5:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Deragon JM, Zhang XY (2006) Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst Biol 55:949–956

    Article  PubMed  Google Scholar 

  • Deragon JM, Landry BS, Pélissier T, Tutois S, Tourmente S, Picard G (1994) An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J Mol Evol 39:378–386

    Article  CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  • Ferrigno O, Virolle T, Djabari Z, Ortonne JP, White RJ, Aberdam D (2001) Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat Genet 28:77–81

    CAS  PubMed  Google Scholar 

  • Gadzalski M, Sakowicz T (2011) Novel SINEs families in Medicago truncatula and Lotus japonicus: bioinformatic analysis. Gene 480:21–27

    Article  CAS  PubMed  Google Scholar 

  • Galli G, Hofstetter H, Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294:626–631

    Article  CAS  PubMed  Google Scholar 

  • Gogolevsky KP, Vassetzky NS, Kramerov DA (2008) Bov-B-mobilized SINEs in vertebrate genomes. Gene 407:75–85

    Article  CAS  PubMed  Google Scholar 

  • Gogolevsky KP, Vassetzky NS, Kramerov DA (2009) 5S rRNA-derived and tRNA-derived SINEs in fruit bats. Genomics 93:494–500

    Article  CAS  PubMed  Google Scholar 

  • Jamburuthugoda VK, Eickbush TH (2011) The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that Encoded by HIV-1. J Mol Biol 407:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd WS, Olmstead RG (2004) A survey of tricolpate (eudicot) phylogenetic relationships. Am J Bot 91:1627–1644

    Article  PubMed  Google Scholar 

  • Jurka J (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16:418–420

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 39 sequence. Cell 111:433–444

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2003) A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol 20:694–702

    Article  CAS  PubMed  Google Scholar 

  • Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P (1998) Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome 41:527–534

    Article  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2011) Origin and evolution of SINEs in eukaryotic genomes. Heredity 107:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenoir A, Lavie L, Prieto JL, Goubely C, Coté JC, Pélissier T, Deragon JM (2001) The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol 18:2315–2322

    Article  CAS  PubMed  Google Scholar 

  • Lorite P, Garcia MF, Carrillo JA, Palomeque T (2001) A new repetitive DNA sequence family in the olive (Olea europaea L.). Hereditas 134:73–78

    Article  CAS  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and portuguese cultivars of O. europaea using flow cytometry. Genet Res Crop Evol 54:21–25

    Article  CAS  Google Scholar 

  • Minelli S, Maggini F, Gelati MT, Angiolillo A, Cionini PG (2000) The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in situ hybridization of highly repeated DNA sequences. Chromosome Res 8:615–619

    Article  CAS  PubMed  Google Scholar 

  • Natali L, Giordani T, Buti M, Cavallini A (2007) Isolation of Ty1-Copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol Breed 19:255–265

    Article  CAS  Google Scholar 

  • Natali L, Cossu RM, Barghini E, Giordani T, Buti M, Mascagni F et al (2013) The repetitive component of the sunflower genome as revealed by different procedures for assembling next generation sequencing reads. BMC Genom 14:686

    Article  CAS  Google Scholar 

  • Natali L, Cossu RM, Mascagni F, Giordani T, Cavallini A (2015) A survey of Gypsy and Copia LTR-retrotransposon superfamilies and lineages and their distinct dynamics in the Populus trichocarpa (L.) genome. Tree Genet Genomes 11:107

    Article  Google Scholar 

  • Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504

    Article  CAS  PubMed  Google Scholar 

  • Perna NT, Batzer MA, Deininger PL, Stoneking M (1992) Alu insertion polymorphism—a new type of marker for human-population studies. Hum Biol 64:641–648

    CAS  PubMed  Google Scholar 

  • Rowold DJ, Herrara RJ (2000) Alu elements and the human genome. Genetica 108:57–72

    Article  CAS  PubMed  Google Scholar 

  • Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    Article  CAS  PubMed  Google Scholar 

  • Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC et al (2015) Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. Plant J 85:229–244

    Article  Google Scholar 

  • Seibt KM, Wenke T, Muders K, Truberg B, Schmidt T (2016) Short Interspersed Nuclear Elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. Plant J. doi:10.1111/tpj.13170)

    Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    Article  CAS  PubMed  Google Scholar 

  • Smit AFA, Hubley R, Green P (2004) RepeatMasker. Open-3.0. http://www.repeatmasker.org/

  • Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M (2002) Genomic and chromosomal organization of Ty1-Copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet 104:926–933

    Article  CAS  PubMed  Google Scholar 

  • Sun FJ, Fleurdépine S, Bousquet-Antonelli C, Caetano-Anolle’s G, Deragon JM (2007) Common evolutionary trends for SINE RNA structures. Trends Genet 23:26–33

    Article  PubMed  Google Scholar 

  • Swaminathan K, Varala K, Hudson ME (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genom 8:132

    Article  Google Scholar 

  • Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchimoto S, Hirao Y, Ohtsubo E, Ohtsubo H (2008) New SINE families from rice, OsSN, with poly(A) at the 3′ ends. Genes Genet Syst 83:227–236

    Article  CAS  PubMed  Google Scholar 

  • Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    Article  CAS  PubMed  Google Scholar 

  • Umeda M, Ohtsubo H, Ohtsubo E (1991) Diversification of the plant Short Interspersed Nuclear Elements 11 of 12 rice waxy gene by insertion of mobile DNA elements into introns. Jpn J Genet 66:569–586

    Article  CAS  PubMed  Google Scholar 

  • Vassetzky NS, Kramerov DA (2013) SINEBase: a database and tool for SINE analysis. Nucleic Acids Res 41:D83–D89

    Article  CAS  PubMed  Google Scholar 

  • Wenke T, Dobel T, Sorensen TR, Junghans H, Weisshaar B, Schmidt T (2011) Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell 23:3117–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Yasui Y, Nasuda S, Matsuoka Y, Kawahara T (2001) The Au family, a novel short interspersed element (SINE) from Aegilops umbellulata. Theor Appl Genet 102:463–470

    Article  CAS  Google Scholar 

  • Yoshioka Y, Matsumoto S, Kojima S, Ohshima K, Okada N, Machida Y (1993) Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc Natl Acad Sci USA 90:6562–6566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by MiPAAF, Italy, Project “OLEA—Genomica e miglioramento genetico dell’olivo”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cavallini.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barghini, E., Mascagni, F., Natali, L. et al. Identification and characterisation of Short Interspersed Nuclear Elements in the olive tree (Olea europaea L.) genome. Mol Genet Genomics 292, 53–61 (2017). https://doi.org/10.1007/s00438-016-1255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1255-3

Keywords

Navigation