Skip to main content
Log in

Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2–S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AA:

Alternative accept site

AD:

Alternative donor site

ARF:

Auxin response factor

AS:

Alternative splicing

CDS:

Sequence coding for amino acids in protein

DEG:

Differentially expressed genes

FPKM:

Fragments per kilobase of transcript per million mapped reads

GO:

Gene ontology

ES:

Exon skipping

IR:

Intron retention

ORF:

Open reading frame

pre-mRNA:

Precursor Messenger RNA

PCA:

Principal component analysis

RRM:

RNA recognition motif

SE:

Skipped exon

SR:

Serine/arginine-rich

SqRT-PCR:

Semi-quantitative reverse transcription and polymerase chain reaction

References

  • Andersen SU, Buechel S, Zhao Z, Ljung K, Novak O (2008) Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana. Plant Cell 20:88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′terminus of adenovirus 2 late mRNA. Proc Natl Acid Sci USA 74(8):3171–3175

    Article  CAS  Google Scholar 

  • Chang CY, Lin WD, Tu SL (2014) Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens. Plant Physiol 165:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun TT, Zhao XY, Li XG, Cheng YF, Zhao YD, Xie Q, Zhang SX (2012) Pattern of auxin and cytokinin responses for shoot meristem induction results from regulation of cytokinin biosynthesis by auxin response factor. Plant Physiol 161(1):240–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinforma Oxf Engl 21(18):3674–3676

    Article  CAS  Google Scholar 

  • Cui K, He CY, Zhang JG, Duan AG, Zeng YF (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. J Proteome Res 11:2492–2507

    Article  CAS  PubMed  Google Scholar 

  • Cusack BP, Wolfe KH (2007) When gene marriages don’t work out: divorce by subfunctionalization. Trends Genet 23:270–272

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Cui P, Wang ZY, Zhang SD, Shahjahan A, Xiong LM (2014) Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genom 15:431

    Article  Google Scholar 

  • Dolores A, Alberto P, Inmaculada H, Conchi S, Silvia PS, Alicia DA, Elena C, Carmen DS (2014) The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC Plant Biol 14:354

    Article  Google Scholar 

  • Dong LJ (2007) Studies on developmental anatomy of elongated growth about bamboo culms. Dissertation, Nanjing Forestry University

  • Ekaterina M, Yimeng Y, Arttu J, Kashyap D, Bernhard S, Alexander P, Nadejda E, Lennart N, Jussi T (2015) Structural insights into the DNA-binding specificity of E2F family transcription factors. Nature commun 3(6):10050

    Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foissac S, Sammeth M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35:W297–W299

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaubatz SF, Lindeman G, Ishida S, Jakoi L, Nevins JR, Livingston DM, Rempel RE (2000) E2F4 and E2F5 play an Essential Role in pocket protein–mediated G1 Control. Mol Cell 6(3):729–735

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2006) Sorting out the complexity of SR protein functions. RNA 6(9):1197–1211

    Article  Google Scholar 

  • He CY, Cui K, Zhang JG, Duan AG, Zeng YF (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in moso bamboo. BMC Plant Biol 13:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori K, Watanabe Y (2007) Context analysis of termination codons in mRNA that are recognized by plant NMD. Plant Cell Physiol 48(9):1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Iida K, Go M (2006) Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Mol Biol Evol 23(5):1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Gotoh O (2011) Comparative analysis of information contents relevant to recognition of introns in many species. BMC Genom 12(1):45

    Article  CAS  Google Scholar 

  • James LM, Roland T (1996) SR proteins and splicing control. Gene Dev 10(13):1569–1579

    Article  Google Scholar 

  • Kalyna M, Barta A (2004) A plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions? Biochem Soc Trans 32:561–564

    Article  CAS  PubMed  Google Scholar 

  • Kopelman NM, Lancet D, Yanai I (2005) Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms. Nat Genet 37(6):588–589

    Article  CAS  PubMed  Google Scholar 

  • Kranthi KM, Scholthof Karen-Beth G (2015) Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27(1):71–85

    Article  Google Scholar 

  • Liu XG, Dinh TT, Li DM, Shi BH, Li YP, Cao XW, Guo L, Pan YY, Jiao YL, Chen XM (2014) AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant J 80:629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Chen D, Shu D, Zhang Z, Wang W, Klukas C (2013) The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol 162(1):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maaike DJ, Mieke WA, Bernardus CS, Catharina LS, Peter FG, Stephen JP, Yury MT, Arnoud GB, Celestina M, Wim HV, Ivo R (2015) Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp Bot 66(11):3405–3416

    Article  Google Scholar 

  • Marchler-Bauer ACDD (2015) NCBI’s conserved domain database. Nucl Acids Res 43:222–226

    Article  Google Scholar 

  • Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22(6):1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miedes E, Zarrab I, Hosonc T, Herbersd K, Sonnewalde U (2011) Xyloglucan endotransglucosylase and cell wall extensibility. J Plant Physiol 168:196–203

    Article  CAS  PubMed  Google Scholar 

  • Nicola V, Claudio F, Elisa CC, Andrea T, Davide C, Michela D, Rosanna Z, Massimiliano C, Vannozzi Alessandro, ClaudioBonghi Margherita L, Giorgio V (2014) Deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol 14:99

    Article  Google Scholar 

  • Palusa SG, Reddy AS (2010) Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay. New Phytol 185(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E (2014) Genome-wide survey of alternative splicing in Sorghum Bicolor. Physiol Mol Biol Plants 20(3):323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panahi B, Mohammadi MS, Khaksefidi RE, Mehrabadi JF, Ebrahimie E (2015) Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis. FEBS Lett 589:3564–3575

    Article  CAS  PubMed  Google Scholar 

  • Paula D (2011) A role for SR proteins in plant stress responses. Plant Signaling & Behavior 6(1):49–54

    Article  Google Scholar 

  • Peng ZH, Lu Y, Li LB, Zhao Q, Feng Q, Gao ZM, Lu HY, Hu T, Yao N, Liu KY, Li Y, Fan DL, Guo JL, Li WJ, Lu YQ, Weng QJ, Zhou CC, Zhang L, Huang T, Zhao Y, Zhu CR, Liu XG, Yang XW, Wang T, Miao K, Zhuang CY, Cao XL, Tang WL, Liu GS, Liu YL, Chen J, Liu ZJ, Yuan LC, Liu ZH, Huang XH, Lu TT, Fei BH, Ning ZM, Han B, Jiang ZH (2013a) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Zhang CL, Zhang Y, Hu T, Hu T, Mu SH, Li XP, Gao J (2013b) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 8(11):e78944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AS, Marquez Y, Kalyna M, Bart A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25(10):3657–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryo T, Masaya I, Takahiro F, Mitsuhiro A, Tian C, Yoshihisa U, Kotaro TY, Yasunori M, Kenzo N, Sumie I (2010) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51(1):164–175

    Article  Google Scholar 

  • Sakharkar MK, Chow VT, Kangueane P (2004) Distributions of exons and introns in the human genome. Silico Biol. (Gedrukt) 4(204):387–393

    CAS  Google Scholar 

  • Shawn T, Zhou WG, April L, Wang BB, Mary B, Gina ZH, Zhao XY, Andy B, Li BL (2014) Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell 26(9):3472–3487

    Article  Google Scholar 

  • Shen YT, Zhou ZK, Wang Z, Li WY, Fang C, Wu M, Ma YM, Liu TF, Kong LA, Peng DL, Tian ZX (2014) Global dissection of alternative splicing in Paleopolyploid Soybean. Plant Cell 26(3):996–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, Galván-Ampudia CS, Offringa R, Friml J, Yanofsky MF, Østergaard L (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459:583–586

    Article  CAS  PubMed  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25(10):3640–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Tomasz EK, Konstantin VK (2011) Evolution of exon-intron structure and alternative splicing. PLoS One 6(3):e18055

    Article  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Dan R (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768

    Article  CAS  Google Scholar 

  • Walters B, Lum G, Sablok G, Min XJ (2013) Genome-wide landscape of alternative splicing events in Brachypodium distachyon. DNA Res 20(2):163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing HY, Pudake RN, Guo GG, Xing GF, Hu XR, Zhang YR, Sun QX, Ni ZF (2011) Genome-wide identification and expression profiling ofauxin response factor (ARF) gene family in maize. BMC Genom 12:178

    Article  CAS  Google Scholar 

  • Zhang GJ, Guo GW, Hu XD, Zhang Y, Li QY, Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Chen L, Tian W, Tao Y, Kristiansen K, Zhang XQ, Li SG, Yang HM, Wang J, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20(5):646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

National High Technology Research and Development Program of China “Moso Bamboo Functional Genomics Research” (Grant No. 2013AA102607-4), Fundamental Research Funds of ICBR (Grant No. 1632015009), and Fundamental Research Funds of ICBR (Grant No. 1632016003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. K. Tyagi.

L. Li and T. Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2016_1212_MOESM1_ESM.pdf

Online resource 1 Fig. S1: Mapping result of the RNA-seq reads; Fig. S2: Phylogenetic relationships among different samples based on isoform expressions; Fig. S3: Validation of AS events based on RT-PCR; Fig. S4: Expression level of AS genes and non-AS genes at different growth stages; Fig. S5: FPKM value distribution of the first, second, and third most abundant isoforms at different shoot growth stages (CK, S1–S7); Fig. S6: The relationship between the number of identified isoforms and gene expression level at different shoot growth stage (CK, S1-S7); Fig. S7: Functional categorization (FDR < 0.01) of AS-occurring genes in shoot growth; Fig. S8: Enriched biological process GO terms of AS genes; Fig. S9: K-means clustering of differentially expressed isoforms; Expression and conserved domain analysis of isoforms from five plant growth and hormone signing associated families: (a) transport inhibitor response 1 (TIR1), (b) auxin-responsive protein IAA (AUX/IAA), (c) auxin-responsive GH3, and (d) MADS; Fig. S11: Distribution of different types of alternative splicing events in different species. (PDF 5257 kb)

438_2016_1212_MOESM2_ESM.xlsx

Online resource 2 Table S1: Primers used to amplify AS events; Table S2: Gene models of all identified isoforms; Table S3: AS events in moso bamboo; Table S4: GC content, exon number, and mRNA length of all moso bamboo genes; Table S5: Expression values of all identified isoforms during shoot growth; Table S6: GO annotation of all moso bamboo genes; Table S7: List of differentially expressed isoforms and their structures. (XLSX 64402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, T., Li, X. et al. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo. Mol Genet Genomics 291, 1695–1714 (2016). https://doi.org/10.1007/s00438-016-1212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1212-1

Keywords

Navigation