Skip to main content
Log in

SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Researchers have made great advances into the development and application of genomic approaches for common beans, creating opportunities to driving more real and applicable strategies for sustainable management of the genetic resource towards plant breeding. This work provides useful polymorphic single-nucleotide polymorphisms (SNPs) for high-throughput common bean genotyping developed by RAD (restriction site-associated DNA) sequencing. The RAD tags were generated from DNA pooled from 12 common bean genotypes, including breeding lines of different gene pools and market classes. The aligned sequences identified 23,748 putative RAD-SNPs, of which 3357 were adequate for genotyping; 1032 RAD-SNPs with the highest ADT (assay design tool) score are presented in this article. The RAD-SNPs were structurally annotated in different coding (47.00 %) and non-coding (53.00 %) sequence components of genes. A subset of 384 RAD-SNPs with broad genome distribution was used to genotype a diverse panel of 95 common bean germplasms and revealed a successful amplification rate of 96.6 %, showing 73 % of polymorphic SNPs within the Andean group and 83 % in the Mesoamerican group. A slightly increased He (0.161, n = 21) value was estimated for the Andean gene pool, compared to the Mesoamerican group (0.156, n = 74). For the linkage disequilibrium (LD) analysis, from a group of 580 SNPs (289 RAD-SNPs and 291 BARC-SNPs) genotyped for the same set of genotypes, 70.2 % were in LD, decreasing to 0.10 %in the Andean group and 0.77 % in the Mesoamerican group. Haplotype patterns spanning 310 Mb of the genome (60 %) were characterized in samples from different origins. However, the haplotype frameworks were under-represented for the Andean (7.85 %) and Mesoamerican (5.55 %) gene pools separately. In conclusion, RAD sequencing allowed the discovery of hundreds of useful SNPs for broad genetic analysis of common bean germplasm. From now, this approach provides an excellent panel of molecular tools for whole genome analysis, allowing integrating and better exploring the common bean breeding practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino G (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genom 12:304

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene G, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197(1):300–313

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker-assisted selection in common beans and cassava. In: Guimarães EP, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 81–117

    Google Scholar 

  • Blair MW, Chavarro CM, Muñoz-Torres MC, Giraldo MC, Pedraza F (2009) Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Cortés AJ, Penmetsa RV, Farmer A, Carrasquilla-Garcia N, Cook DR (2013) A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126:535–548

    Article  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cardoso PC, Veiga MM, de Menezes IP, Valdisser PA, Borba TC, Melo LC, Del Peloso MJ, Brondani C, Vianello RP (2013) Molecular characterization of high performance inbred lines of Brazilian common beans. Genet Mol Res 12(4):5467–5484

    Article  CAS  PubMed  Google Scholar 

  • Cardoso PC, Brondani C, Menezes IP, Valdisser PA, Borba TC, Del Peloso MJ, Vianello RP (2014) Discrimination of common bean cultivars using multiplexed microsatellite markers. Genet Mol Res 13(1):1964–1978

    Article  CAS  PubMed  Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genom 12:4

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845

    Article  PubMed  Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueno J, Windhausen VS, Buckler E et al (2013). Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3: Genes Genom Genet 3:1903–1926

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA (2011) Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6:e18561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE : a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The Structure of Haplotype Blocks in the Human Genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  • Gaitán-Solís E, Choi IY, Quigley C, Cregan P, Tohme J (2008) Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system. The Plant Genome 1:125–134

    Article  Google Scholar 

  • Galeano CH, Fernandez AC, Gomez M, Blair MW (2009a) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genom 10:629

    Article  Google Scholar 

  • Galeano CH, Gomez M, Rodriguez LM, Blair MW (2009b) CEL I nuclease digestion for SNP discovery and marker development in common bean (Phaseolus vulgaris L.). Crop Sci 49:381–394

    Article  CAS  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gautier M, Foucaud J, Gharbi K, Cezard T, Galan M, Loiseau A, Thomson M, Pudlo P, Kerdelhue C, Estoup A (2013) Estimation of population allele frequencies at molecular markers produced by next generation sequencing methods: pooled versus individual DNA samples. Mol Ecol 22:3766–3779

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (2014) The contribution of genetic and genomic approaches to plant domestication studies. Curr Opin Plant Biol 18:51–59

    Article  PubMed  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

    Article  PubMed  PubMed Central  Google Scholar 

  • Goretti D, Bitocchi E, Bellucci E, Rodriguez M, Rau D, Gioia T, Attene G, McClean P, Nanni L, Papa R (2014) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breeding 33(3):531–544

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grattapaglia D, Silva-Junior OB, Kirst M, de Lima BM, Faria DA, Pappas GJ Jr (2011) High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species. BMC Plant Biol 11:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson RR (2001) Linkage disequilibrium and recombination. In: Bishop M, Cannings C, Balding DJ (eds) Handbook of statistical genetics. chichester. Wiley, USA, pp 309–324

    Google Scholar 

  • Hyten DL, Cannon SB, Song QJ, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genom 11:38

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jarquin D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genom 15:740

    Article  Google Scholar 

  • Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, McClean P (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116

    Article  PubMed  Google Scholar 

  • Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet 120:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Müller BSF, Pappas GJ, Valdisser PAMR, Coelho GRC, Menezes IPP, Abreu AG, Borba TCO, Sakamoto T, Brondani C, Barros EG, Vianello RP (2015) An operational SNP panel integrated to SSR marker for the assessment of genetic diversity and population structure of the common bean. Plant Mol Bio Rep. doi:10.1007/s11105-015-0866-x

    Google Scholar 

  • Nagasaki H, Ebana K, Shibaya T, Yonemaru J, Yano M (2010) Core single-nucleotide polymorphisms - a tool for genetic analysis of the Japanese rice population. Breeding Sci 60:648–655

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/. Accessed 21 January 2015

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sanchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Gen 5:103–113

    Article  CAS  Google Scholar 

  • Porch TG, Blair MB, Lariguet P, Galeano C, Pankhurst CE, Broughton WJ (2009) Generation of a mutant population for tilling common bean genotype BAT 93. J Am Soc Hort Sci 134(3):348–355

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Liu R, Carvalho BS; Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Irizarry RA (2011) Comparing genotyping algorithms for Illumina’s Infinium whole-genome SNP BeadChips. BMC Bioinformatics 12:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G (2015) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytol. doi:10.1111/nph.13713

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Terán H, Gutierrez JA (2001) Registration of SEA5 and SEA13 drought tolerant dry bean germplasm. Crop Sci 41:276–277

    Article  Google Scholar 

  • Souza TLPO, Barros EG, Bellato CM, Hwang EY, Cregan PB, Pastor-Corrales MA (2012) Single nucleotide polymorphism discovery in common bean. Mol Breeding 30:419–428

    Article  Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716

    Article  CAS  PubMed  Google Scholar 

  • Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song Q, Schultz Q, Qi L (2014) A High-Density SNP Map of Sunflower Derived from RAD-Sequencing Facilitating Fine-Mapping of the Rust Resistance Gene R12. PLoS One 9:e98628

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson MJ, Zhao KY, Wright M, McNally KL, Rey J, Tung CW, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail AM, de Ocampo M, Mojica C, Reveche MY, Dilla-Ermita CJ, Mauleon R, Leung H, Bustamante C, McCouch SR (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breeding 29:875–886

    Article  CAS  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche A, Erb I, Câmara F, Prieto-Barja P, Corvelo A, Sanseverino W, Westergaard G, Dohm JC, Pappas Jr GJ, Saburido-Alvarez S, Kedra D, Gonzalez I, Cozzuto L, Gómez-Garrido J, Aguilar-Morón MA, Andreu N, Aguilar OM, Garcia-Mas J, Zehnsdorf M, Vázquez MP, Delgado-Salinas A, Delaye L. Lowy E, Mentaberry A, Vianello-Brondani RP, García JL, Alioto T, Sánchez F, Himmelbauer H, Santalla M, Notredame C, Gabaldón T, Herrera-Estrella A, Guigó R (2016) The genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol. doi:10.1186/s13059-016-0883-6

  • Willing EM, Hoffmann M, Klein JD, Weigel D, Dreyer C (2011) Paired-end RAD-seq for de novo assembly and marker design without available reference. Bioinformatics 27:2187–2193

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ren C, Joshi T, Vuong T, Xu D, Nguyen HT (2010) SNP discovery by high-throughput sequencing in soybean. BMC Genom 11:469

    Article  Google Scholar 

  • Zaiontz C (2013) Real Statistics using Excel. http://www.real-statistics.com/reliability/cronbachs- alpha. Acessed 12 November 2015

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Council for Scientific and Technological Development (CNPq) for the grants to BSFM, WJP, CB and RPV. The Brazilian Agricultural Research Corporation (EMBRAPA) for providing financial support for this research (Project Number 02.12.12.005.00.00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana P. Vianello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by R. K. Varshney.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdisser, P.A.M.R., Pappas, G.J., de Menezes, I.P.P. et al. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis. Mol Genet Genomics 291, 1277–1291 (2016). https://doi.org/10.1007/s00438-016-1182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1182-3

Keywords

Navigation