Skip to main content
Log in

Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

RNA-binding glycine-rich (RBG) proteins play diverse roles in plant growth, development, protection and genome organization. An overly broad definition for class IV glycine-rich proteins (GRPs), namely RNA-binding activity and a glycine-rich C-terminus, has resulted in many distantly related and/or non-related proteins being grouped into this class of RBGs. This definition has hampered the study of RBG evolution. In this study, we used a comparative genomic approach consisting of ortholog, homolog, synteny and phylogenetic analyses to legitimately exclude all distantly/non-related proteins from class IV GRPs and to identify 15, 22, 12 and 18 RBG proteins in Arabidopsis, Chinese cabbage, rice and maize genomes, respectively. All identified RBGs could be divided into three subclasses, namely RBGA, RBGB and RBGD, which may be derived from a common ancestor. We assigned RBGs excluded from class IV GRPs to a separate RBG superfamily. RBGs have evolved and diversified in different species via different mechanisms; segmental duplication and recombination have had major effects, with tandem duplication, intron addition/deletion and domain recombination/deletion playing minor roles. Loss and retention of duplicated RBGs after polyploidization has been species and subclass specific. For example, following recent whole-genome duplication and triplication in maize and Chinese cabbage, respectively, most duplicated copies of RBGA have been lost in maize while RBGD duplicates have been retained; in Chinese cabbage, in contrast, RBGA duplicates have been retained while RBGD duplicates have been lost. Our findings reveal fundamental information and shed new light on the structural characteristics and evolutionary dynamics of RBGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akindahunsi AA, Bandiera A, Manzini G (2005) Vertebrate 2xRBD hnRNP proteins: a comparative analysis of genome, mRNA and protein sequences. Comp Biol Chem 29:13–23

    Article  CAS  Google Scholar 

  • Barker MS, Baute GJ, Liu SL (2012) Duplications and turnover in plant genomes. In: Wandel et al (eds) Plant genome diversity. Springer, Vienna, pp 155–169

  • Bhatla N (2012) Exon-intron graphic maker (http://wormweb.org/exonintron). Accessed on 20 Dec 2015

  • Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto-Martins G (2005) Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet Mol Biol 28:608–624

    Article  CAS  Google Scholar 

  • Bove J, Kim CY, Gibson CA, Assmann SM (2008) Characterization of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis. Plant Mol Biol 67:71–88

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 8:433–438

    Article  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4(1):10

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaikam V, Karlson D (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ 31:995–1006

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Manda´kova´ T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciuzan O, Hancock J, Pamfil D, Wilson I, Ladomery M (2015) The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. Physiol Plant 153:1–11

    Article  CAS  PubMed  Google Scholar 

  • Condit CM, Meagher RB (1986) A gene encoding a novel glycine-rich structural protein of petunia. Nature 323:178–181

    Article  CAS  Google Scholar 

  • Danno S, Nishiyama H, Higashitsuji H, Yokoi H, Xue JH, Itoh K, Matsuda T, Fujita J (1997) Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress. Biochem Biophys Res Commun 236:804–807

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO (1976) Origin and evolution of protein superfamilies. Fed Proc 35:2132–2138

    CAS  PubMed  Google Scholar 

  • Demuth JP, Hahn MW (2009) The life and death of gene families. BioEssays 31:29–39

    Article  PubMed  Google Scholar 

  • Derry JMJ, Kerns JA, Francke U (1995) RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Hum Mol Genet 12:2307–2311

    Article  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements A, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J et al (2014) The Pfam protein families database. Nucleic Acids Res 42:D222–D230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fusaro A, Mangeon A, Junqueira RM, Rocha CAB, Coutinho TC, Margis R, Sachetto-Martins G (2001) Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs) encoding glycine-rich proteins (GRPs). Genet Mol Biol 24:263–273

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana Press. pp 571–607

  • Ginisty H, Sicard H, Roger B, Bouvet P (1999) Structure and functions of nucleolin. J Cell Sci 112:761–772

    CAS  PubMed  Google Scholar 

  • Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290

    Article  CAS  PubMed  Google Scholar 

  • Hanano S, Sugita M, Sugiura M (1996) Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Plant Mol Biol 31:57–68

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22

    Article  CAS  PubMed  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of cold shock domain protein family in plants. Plant Physiol 131:12–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawahara Y, Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ, Kim OY, Kim JY, Song J, Jang B, Jung CH, Kang H (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim WY, Kim JY, Jung HJ, Oh SH, Han YS, Kang H (2010a) Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. Plant Physiol Biochem 48:866–872

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim WY, Kwak JK, Oh SH, Han YS, Kang H (2010b) Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Botany 61:2317–2325

    Article  CAS  Google Scholar 

  • Kim JY, Kim WY, Kwak KY, Oh SH, Han YS, Kang H (2010c) Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant, Cell Environ 33:759–768

    Article  CAS  Google Scholar 

  • Kingsley PD, Palis J (1992) GRP2 proteins contain both CCHC zinc fingers and a cold shock domain. Plant Cell 6:1522–1523

    Article  Google Scholar 

  • Knowles DG, McLysaght A (2006) High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. Mol Biol Evol 23:1548–1557

    Article  CAS  PubMed  Google Scholar 

  • Kurata N, Yamazaki Y (2006) Oryzabase. An integrated biological and genome information database for rice. Plant Physiol 140:12–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lago C, Clerici E, Mizzi L, Lucia C, Kater MM (2004) TBP-associated factors in Arabidopsis. Gene 342:231–241

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucl Acids Res 41:D1152–D1158

    Article  PubMed Central  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  PubMed Central  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lorkovic ZJ, Barta A (2002) Genome analysis,RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorković ZJ, Lehner R, Forstner C, Barta A (2005) Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 11:1095–1107

    Article  PubMed Central  PubMed  Google Scholar 

  • Mangeon A, Junqueira RM, Sachetto-Martins G (2010) Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav 5:99–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meinke D, Koorrnneef M (1997) Community standards for Arabidopsis genetics. Plant J 12:247–253

    Article  CAS  Google Scholar 

  • Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J et al (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42:D1193–D1199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J (1997) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 4:899–908

    Article  Google Scholar 

  • Sachetto-Martins G, Franco LO, de Oliveira DE (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim Biophys Acta 1492:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Imai R (2012) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116

    Google Scholar 

  • Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang CC, Iwamoto M, Abe T et al (2013) Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54:e6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sen TZ, Harper LC, Schaeffer ML, Andorf CM, Seigfried T, Campbell DA, Lawrence CJ (2010) Choosing a genome browser for a Model Organism Database: surveying the Maize community. Database 2010:baq007

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed Central  PubMed  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, DePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Soulard M, Valle VD, Siomi MC, Pinol-Roma S, Codogno P, Bauvy C, Bellinin M, Lacroix JC, Monod G, Dreyfuss G et al (1993) hnRNP G: sequence and characterization of a glycosylated RNA-binding protein. Nucleic Acids Res 21:4210–4217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinert PM, Mack JW, Korge BP, Gan SQ, Haynes SR, Steven AC (1991) Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Biol Macromol 13:130–139

    Article  CAS  PubMed  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tairishi MM, Tuteja R, Tuteja N (2011) Nuclelolin: the most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol 4:267–275

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mole Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tomcal M, Stiffler N, Barkan A (2013) POGs2: a web portal to facilitate cross-species inferences about protein architecture and function in plants. PLoS ONE 8:e82569

    Article  PubMed Central  PubMed  Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    Article  PubMed  Google Scholar 

  • Vermel M, Guermann B, Delage L, Grienenberger JM, Marechal-Drouard L, Gualberto JM (2002) A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci USA 99:5866–5871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 12:R102

    Article  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Weiner J, Beaussart F, Bornberg-Bauer E (2006) Domain deletions and substitutions in the modular protein evolution. FEBS J 273:2037–2047

    Article  CAS  PubMed  Google Scholar 

  • Weiner J, Moore Ad, Bornberg-Bauer E (2008) Just how versatile are domains? Evol Biol 8:285–299

    Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Mi P, Dong W, Hu S, Zeng C et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3(2):e38

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Zhao Y, Xiao H, Zheng Y, Yue B (2014) Genome-wide identification, evolution, and expression analysis of RNA-binding glycine-rich protein family in maize. J Integr Plant Biol 56:1020–1031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Postdoctoral Fellowship Program of the National Academy of Agricultural Science, the Rural Program for Agricultural Science and Technology Development (Project No.: PJ01002503) and by the Next-Generation Biogreen 21 Program (Project No.: PJ01116603), Rural Development Administration, Korea.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo In Lee.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, P., Kim, J.A., Jeong, MJ. et al. Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes. Mol Genet Genomics 290, 2279–2295 (2015). https://doi.org/10.1007/s00438-015-1080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1080-0

Keywords

Navigation