Skip to main content
Log in

Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addicott FT (1982) Abscission. University of California Press, Berkeley

    Google Scholar 

  • Agustí J, Zaragoza S, Iglesias DJ, Almela V, Primo-Millo E, Talón M (2001) The synthetic auxin 3,5,6-TPA stimulates carbohydrate accumulation and growth in citrus fruit. Plant Growth Regul 36:141–147

    Article  Google Scholar 

  • Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59:2717–2733

    Article  PubMed Central  PubMed  Google Scholar 

  • Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2009) Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol 9:127

    Article  PubMed Central  PubMed  Google Scholar 

  • Alferez F, Zhong GY, Burns JK (2007) A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis. J Exp Bot 58:2451–2462

    Article  CAS  PubMed  Google Scholar 

  • Ballester A-R, Lafuente MT, Forment J, Gadea J, Vos R, Bovy AG, González-candelas L, De Vos RCH (2011) Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance. Mol Plant Pathol 12:879–897

    Article  CAS  PubMed  Google Scholar 

  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9:1169–1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol 155:185–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown KM (1997) Ethylene and abscission. Physiol Plant 100:567–576

    Article  CAS  Google Scholar 

  • Brown GE, Burns JK (1998) Enhanced activity of abscission enzymes predisposes oranges to invasion by Diplodia natalensis during ethylene degreening. Postharvest Biol Tec 14:217–227

    Article  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burns JK (2002) Using molecular biology tools to identify abscission materials for Citrus. HortScience 37:459–464

    CAS  Google Scholar 

  • Cai S, Lashbrook CC (2008) Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol 146:1305–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578

    Article  CAS  PubMed  Google Scholar 

  • Dal Cin V, Danesin M, Rizzini FM, Ramina A (2005) RNA extraction from plant tissues. Mol Biotechnol 31:113–119

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U, Prasad PVV (2010) Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels. J Plant Physiol 167:1–9

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ Exp Bot 71:215–223

    Article  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Estornell LH, Agusti J, Merelo P, Talón M, Tadeo FR (2013) Elucidating mechanisms underlying organ abscission. Plant Sci 199–200:48–60

    Article  PubMed  Google Scholar 

  • Fujii H, Shimada T, Sugiyama A, Nishikawa F, Endo T, Nakano M, Ikoma Y, Shimizu T, Omura M (2007) Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22 K oligoarray. Plant Sci 173:340–348

    Article  CAS  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo S, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:2–7

    Article  Google Scholar 

  • Goldschmidt EE, Huberman M, Goren R (1993) Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists. Plant Growth Regul 12:325–329

    Article  CAS  Google Scholar 

  • Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636–643

    Article  PubMed  Google Scholar 

  • González-Carranza ZH, Whitelaw CA, Swarup R, Roberts JA (2002) Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiol 128:534–543

    Article  PubMed Central  PubMed  Google Scholar 

  • González-Carranza ZH, Elliott KA, Roberts JA (2007) Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot 58:3719–3730

    Article  PubMed  Google Scholar 

  • Goren R (1993) Anatomical, physiological and hormonal aspects of abscission in Citrus. Hort Rev 15:33–46

    Google Scholar 

  • Hartmond U, Yuan R, Burns JK, Grant A, Kender WJ (2000) Citrus fruit abscission induced by methyl-jasmonate. J Amer Soc Hort Sci 125:547–552

    CAS  Google Scholar 

  • Hollman PCH, Katan MB (1999) Dietary Flavonoids : intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  CAS  PubMed  Google Scholar 

  • Hong SB, Sexton R, Tucker ML (2000) Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol 123:869–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huberman M, Goren R, Birk Y (1975) The effects of pH, ionic strength, and ethylene on the extraction of cellulase from abscission zones of citrus leaf explants. Plant Physiol 55:941–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huberman MR, Goren R, Zamski E (1983) Anatomical, aspects of hormonal regulation of abscission in citrus- the shoot-peduncle abscission zone in the non-abscising stage. Physiol Plant 59:445–454

    Article  Google Scholar 

  • Iglesias DJ, Cercós M, Colmenero-flores JM, Naranjo MA, Carrera E, Ruiz-rivero O, Lliso I, Morillon R, Tadeo FR, Talon M (2007) Physiology of citrus fruiting. Braz J Plant Physiol 19:333–362

    Article  CAS  Google Scholar 

  • Isono K, Niwa Y, Satoh K, Kobayashi H (1997) Evidence for transcriptional regulation of plastid photosynthesis genes in Arabidopsis thaliana roots. Plant Physiol 114:623–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653–661

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE (2004) Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219:243–252

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Riov J, Weiss D, Goldschmidt EE (2005) The climacteric-like behaviour of young, mature and wounded citrus leaves. J Exp Bot 56:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Kazokas WC, Burns JK (1998) Cellulase activity and gene expression in citrus abscission during and after ethylene treatment. J Amer Soc Hort Sci 123:781–786

    CAS  Google Scholar 

  • Khabudaev KV, Petrova DP, Grachev MA, Likhoshway YV (2014) A new subfamily LIP of the major intrinsic proteins. BMC Genom 15:173

    Article  Google Scholar 

  • Kostenyuk IA, Zon J, Burns JK (2002) Phenylalanine ammonia lyase gene expression during abscission in citrus. Physiol Plant 116:106–112

    Article  CAS  PubMed  Google Scholar 

  • Kraut DA, Prakash S, Matouschek A (2007) To degrade or release: ubiquitin-chain remodeling. Trends Cell Biol 17:419–421

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KS, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A (2010) Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol 154:1929–1956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK (2013) Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice New York 6:38

    Google Scholar 

  • Muraro RP, Spreen TH, Pozzan M (2003) Comparative costs of growing citrus in Florida and Sao Paulo (Brazil) for the 2000-01 Season. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS

    Google Scholar 

  • Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y (2012) MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol 158:439–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano T, Fujisawa M, Shima Y, Ito Y (2013) Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals. BMC Plant Biol 13:40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano T, Fujisawa M, Shima Y, Ito Y (2014) The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J Exp Bot 65:3111–3119

    Article  PubMed Central  PubMed  Google Scholar 

  • Osborne DJ (1989) Abscission. Crit Rev Plant Sci 8:103–129

    Article  CAS  Google Scholar 

  • Pasentsis K, Falara V, Pateraki I, Gerasopoulos D, Kanellis AK (2007) Identification and expression profiling of low oxygen regulated genes from Citrus flavedo tissues using RT-PCR differential display. J Exp Bot 58:2203–2216

    Article  CAS  PubMed  Google Scholar 

  • Patterson SE (2001) Cutting loose: abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poelman EH, Broekgaarden C, Van Loon JJA, Dicke M (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365

    Article  CAS  PubMed  Google Scholar 

  • Purvis AC, Barmore CR (1981) Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. Plant Physiol 68:854–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JA, Whitelaw CA, Gonzalez-Carranza ZH, McManus MT (2000) Cell separation processes in plants: models, mechanisms and manipulation. Ann Bot 86:223–235

    Article  Google Scholar 

  • Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53:131–158

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Zacarias L (2007) Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Bio Tec 43:14–22

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sabir F, Leandro MJ, Martins AP, Loureiro-Dias MC, Moura TF, Soveral G, Prista C (2014) Exploring three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast. PLoS One 9:e102087

    Article  PubMed Central  PubMed  Google Scholar 

  • Sagee O, Goren R, Riov J (1980) Abscission of Citrus Leaf Explants. Plant Physiol 66:750–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagee O, Riov J, Goren R (1990) Ethylene-enhanced catabolism of [14C]indole-3-acetic Acid to indole-3-carboxylic Acid in citrus leaf tissues. Plant Physiol 92:54–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem BA, Ziaf K, Farooq M, Ahmed W (2005) Fruit set and drop patterns as affected by type and sose of fertilizer application in Mandarin Cultivars (Citrus reticulata Blanco). Int J Agric Biol 7:962–965

    Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Staswick P (2009) Plant hormone conjugation: a signal decision. Plant Signal Behav 4:757–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo F, Agustí J, Alós E, Andres F, Soler G, Brumos J, Iglesias DJ, Götz S, Legaz F, Argout X, Courtois B, Ollitrault P, Dossat C, Wincker P, Morillon R, Talon M (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genom 8:31

    Article  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Tomassen MMM, Barrett DM, van der Valk HCPM, Woltering EJ (2007) Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation. J Exp Bot 58:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Trebitsh T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci USA 90:9441–9445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible W-R, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Liu D, Li A, Sun X, Zhang R, Wu L, Liang Y, Mao L (2013) Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes. PLoS ONE 8:e55238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Z, Burns JK (2003) Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. J Exp Bot 54:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Burns JK (2004) A beta-galactosidase gene is expressed during mature fruit abscission of ‘Valencia’ orange (Citrus sinensis). J Exp Bot 55:1483–1490

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang J-W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu X-W, Cheng Y-J, Xu J, Liu J-H, Luo OJ, Tang Z, Guo W-W, Kuang H, Zhang H-Y, Roose ML, Nagarajan N, Deng X-X, Ruan Y (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yuan R, Wu Z, Kostenyuk IA, Burns JK (2005) G-protein-coupled alpha2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. J Exp Bot 56:1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Zhong GY, Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131

    Article  CAS  PubMed  Google Scholar 

  • Zhong G, Huberman M, Qiao X, Sisler EC, Holland D, Goren R (2001a) Effect of 1-methylcyclopropene on ethylene-induced abscission in citrus. Physiol Plant 113:134–141

    Article  CAS  Google Scholar 

  • Zhong GY, Goren R, Riov J, Sisler EC, Holland D (2001b) Characterization of an ethylene-induced esterase gene isolated from Citrus sinensis by competitive hybridization. Physiol Plant 113:267–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Science and Technology Cooperation Program of China (2012DFA30610), the Science and Technology Planning Project of Guangdong Province (2012A020200016), and by Chongqing Municipal Science and Technology Commission (2007AA1018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyan Zhong.

Additional information

Communicated by S. Hohmann.

C. Cheng and L. Zhang contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2015_1054_MOESM1_ESM.xls

Supplementary material 1 (XLS 224 kb) Supplemental data S1 The 1568 differentially expressed genes identified by microarray in this study

Supplementary material 2 (XLS 485 kb) Supplemental data S2 MapMan analysis results of the DEGs identified in this study

Supplementary material 3 (XLS 20 kb) Supplemental data S3 qRT-PCR primers used in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Zhang, L., Yang, X. et al. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene. Mol Genet Genomics 290, 1991–2006 (2015). https://doi.org/10.1007/s00438-015-1054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1054-2

Keywords

Navigation