Skip to main content
Log in

Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Tropane alkaloids (TAs) such as anisodamine, anisodine, hyoscyamine and scopolamine are extensively used in clinical practice as anticholinergic agents. Anisodus acutangulus produces TAs in root tissue, and although several genes involved in scopolamine biosynthesis have been cloned, yet the biosynthetic pathway of TAs remains poorly understood. To further understand TAs biosynthesis mechanism, transcriptome analysis with deep RNA sequencing in A. acutangulus roots was performed in this study; 48 unigenes related to tropane, piperidine and pyridine alkaloid biosynthesis, 145 linked to the distribution of arginine to TAs biosynthesis, and 86 categorized to terpenoid backbone biosynthesis have been identified in pathway enrichment analyses with eukaryotic orthologous groups (KOG) and Kyoto encyclopedia of genes and genomes. Additionally, 82 unigenes annotated as cytochrome P450 family members seemed to be involved in secondary metabolism. Genes encoding littorine mutase/monooxygenase (CYP80F1), diamine oxidase (DAO), alcohol dehydrogenase (ADH) and aromatic amino acid aminotransferase (ArAT) may also play roles in TAs biosynthetic pathways. Furthermore, over 1,000 unigenes were identified as potential transcription factors of WRKY, AP2/ERF, MYB and bHLH families, which would be helpful to understand transcriptional regulation of secondary metabolite biosynthesis. These data enable novel insights into A. acutangulus transcriptome, updating the knowledge of TAs biosynthetic mechanism at molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26(3):962–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS (2014) A root-expressed l-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 26(9):3745–3762

    Article  CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christen PMFR, Phillipson D, Evans WC (1993) Alkaloids of Erythroxylum zambesiacum stem-bark. Phytochemistry 34:1147–1151

    Article  CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Dräger B (2006) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67(4):327–337

    Article  PubMed  Google Scholar 

  • Endo T, Hamaguchi N, Eriksson T, Yamada Y (1991) Alkaloid biosynthesis in somatic hybrids of Duboisia leichhardtii F. Muell and Nicotiana tabacum L. Planta 183:505–510

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey KM (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. J Exp Bot 56(420):2611–2618

    Article  PubMed  Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285

    Article  CAS  Google Scholar 

  • Hashimoto T, Hayashi A, Amano Y, Kohno J, Iwanari H, Usuda S, Yamada Y (1991) Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem 266:4648–4653

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Nakajima K, Ongena G, Yamada Y (1992) Two tropinone reductases with distinct stereospecifities from cultured roots of hyoscyamus niger. Plant Physiol 100:836–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heim WG, Sykes KA, Hildreth SB, Sun J, Lu RH, Jelesko JG (2007) Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. Phytochemistry 68:454–463

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62(8):2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Hsiao PK, Cheng HK, Ho LY (1973) The occurrence of some important tropane alkaloids in Chinese solanaceous plants. J Integr Plant Biol 15:187–194

    CAS  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 6:797–804

    Article  Google Scholar 

  • Jirschitzka J, Dolke F, D’Auria JC (2013) Increasing the pace of new discoveries in tropane alkaloid biosynthesis. Adv Bot Res 68:39–72

    Article  CAS  Google Scholar 

  • Kai GY, Chen JF, Li L, Zhou GY, Zhou LM, Zhang L, Chen YH, Zhao LX (2007) Molecular cloning and characterization of a new cDNA encoding hyoscyamine 6β-hydroxylase from roots of Anisodus acutangulus. J Biochem Mol Biol 40(5):715–722

    Article  CAS  PubMed  Google Scholar 

  • Kai GY, Li L, Jiang YX, Yan XM, Zhang Y, Lu XQ, Liao P, Chen JF (2009a) Molecular cloning, characterization of two tropinone reductases in Anisodus acutangulus and enhancement of tropane alkaloids production in AaTRI-transformed hairy roots. Biotechnol Appl Biochem 54(3):177–186

    Article  CAS  PubMed  Google Scholar 

  • Kai GY, Zhang Y, Chen JF, Li L, Yan XM, Zhang R, Liao P, Lu X, Wang W, Zhou GY (2009b) Molecular characterization and expression analysis of two distinct putrescine N-methyltransferases from roots of Anisodus acutangulus. Physiol Plant 135(2):121–129

    Article  CAS  PubMed  Google Scholar 

  • Kai GY, Xu H, Zhou CC, Liao P, Xiao JB, Luo XQ, You LJ, Zhang L (2011a) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Kai GY, Yang S, Luo XQ, Zhou W, Fu XQ, Zhang A, Zhang Y, Xiao JB (2011b) Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 11:43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kai GY, Zhang A, Guo YY, Li L, Cui LJ, Luo XQ, Liu C, Xiao JB (2012) Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase. Mol Biosys 8(11):2883–2890

    Article  CAS  Google Scholar 

  • Katoh A, Shoji T, Hashimoto T (2007) Molecular cloning of N-methylputrescine oxidase from tobacco. Plant Cell Physiol 48:550–554

    Article  CAS  PubMed  Google Scholar 

  • Li R, Reed DW, Liu E, Nowak J, Pelcher LE, Page JE, Covello PS (2006) Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome p450 involved in littorine rearrangement. Chem Biol 13:513–520

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang J, Wang W, Lu Y, Wang YL, Zhou GY, Kai GY (2008) Optimization of induction and culture conditions and tropane alkaloid production in hairy roots of Anisodus acutangulus. Biotechnol Bioproc E 13:606–612

    Article  CAS  Google Scholar 

  • Lv Q, Cheng R, Shi T (2014) Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions. BMC Plant Biol 14(1):180

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50(12):2146–2161

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507(1):194–203

    Article  CAS  PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed Central  PubMed  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P, Palazón J, Cusidó RM, Piñol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54(381):203–211

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Hashimoto T, Yamada Y (1993) cDNA encoding tropinone reductase-II from Hyoscyamus niger. Plant Physiol 103:1465–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nasomjai P, Reed DW, Tozer DJ, Peach MJ, Slawin AM, Covello PS, O’Hagan D (2009) Mechanistic insights into the cytochrome P450-mediated oxidation and rearrangement of littorine in tropane alkaloid biosynthesis. Chem Biochem 10(14):2382–2393

    CAS  Google Scholar 

  • Palazón J, Ocaña NA, Vazquez LH, Mirjalili HM (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13:1722–1742

    Article  PubMed  Google Scholar 

  • Richter U, Rothe G, Fabian AK, Rahfeld B, Dräger B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56(412):645–652

    Article  CAS  PubMed  Google Scholar 

  • Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 57(4):2081–2093

    Article  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0143

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Chen M, Yang C, Liu X, Zhang L, Lan X, Tang K, Liao Z (2011) Enhancing the scopolamine production in transgenic plants of Atropa belladonna by overexpressing pmt and h6h genes. Physiol Plant 143(4):309–315

    Article  CAS  PubMed  Google Scholar 

  • Wu DK, Wang FL, Chen ZR, Yang JS, Huang QL (1962) Chemical analysis of Anisodus acutangulus in Yunnan and extraction of atropine sulphate. Med Pharm Yunnan 3:67–68

    Google Scholar 

  • Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89(24):11799–11803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Ding RX, Chai YR, Bonfill M, Piñol MT, Xu TF, Pi Y, Wang ZN, Zhang HM, Kai GY, Liao ZH, Sun XF, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Kai GY, Lu BB, Zhang HM, Tang K, Jiang JH, Chen WS (2005) Metabolic engineering of tropane alkaloid biosynthesis in plants. J Integr Plant Biol 47:136–143

    Article  CAS  Google Scholar 

  • Zhang F, Lu X, Lv Z, Zhang L, Zhu M, Jiang W, Wang G, Sun X, Tang K (2013) Overexpression of the artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in artemisia annual. PLoS One 8(2):e56697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Fund (31270007, 31201261; 30900110), New Century Talent Project (NECT-13-0902), Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (131041), Shanghai Talent Development Fund, Open Funding Project of the State Key Laboratory of Bioreactor Engineering, Shanghai Education Committee Fund (13ZZ104), Shanghai Young Teacher Training Project. The authors are grateful to Dr. David Zekria of Fudan University who helped to polish the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Kai.

Additional information

Communicated by S. Hohmann.

L. Cui and F. Huang are co-first authors.

Unigene sequence data reported are available in the NCBI under the GEO accession numbers GSE62162.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Huang, F., Zhang, D. et al. Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus . Mol Genet Genomics 290, 1367–1377 (2015). https://doi.org/10.1007/s00438-015-1005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1005-y

Keywords

Navigation