Skip to main content
Log in

GhAGL15s, preferentially expressed during somatic embryogenesis, promote embryogenic callus formation in cotton (Gossypium hirsutum L.)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Somatic embryogenesis is a useful tool for gene transfer and propagation of plants. AGAMOUS-LIKE15 (AGL15) promotes somatic embryogenesis in many plant species. In this study, three homologous AGL15 genes were isolated from Gossypium hirsutum L., namely GhAGL15-1, GhAGL15-3, and GhAGL15-4. Their putative proteins contained a highly conserved MADS-box DNA-binding domain and a less conserved K domain. Phylogenetic analysis suggested that the three GhAGL15s clustered most closely with AGL15 proteins in other plants. Subcellular location analyses revealed that three GhAGL15s were localized in the nucleus. Furthermore, their expression levels increased following embryogenic callus induction, but sharply decreased during the embryoid stage. GhAGL15-1 and GhAGL15-3 were significantly induced by 2,4-D and kinetin, whereas GhAGL15-4 was only responsive to 2,4-D treatment. Over-expression of the three GhAGL15s in cotton callus improved callus quality and significantly increased the embryogenic callus formation rate, while GhAGL15-4 had the highest positive effect on the embryogenic callus formation rate (an increase from 38.1 to 65.2 %). These results suggest that over-expression of GhAGL15s enhances embryogenic potential of transgenic calli. Therefore, spatiotemporal manipulation of GhAGL15s expression may prove valuable in improving cotton transformation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749. doi:10.1005/Tpc.001941

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. P Natl Acad Sci USA 103(9):3468–3473. doi:10.1073/pnas.0511331103

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2003) Effects of GA(3), ancymidol, cycocel and paclobutrazol on direct somatic embryogenesis of Oncidium in vitro. Plant Cell Tiss Org 72(1):105–108. doi:10.1023/A:1021235700751

    Article  CAS  Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 136(3):3660–3669. doi:10.1104/pp.104.047266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC (2000) The embryo MADS domain factor AGL15 acts postembryonically: inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12(2):183–197. doi:10.2307/3870921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tiss Org 84(1):1–16. doi:10.1007/s11240-005-1371-y

    Article  Google Scholar 

  • Gaj MD, Zhang SB, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222(6):977–988. doi:10.1007/s00425-005-0041-y

    Article  PubMed  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23(4):181–187. doi:10.1007/s00299-004-0822-y

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7(3):373–385. doi:10.1016/j.devcel.2004.06.017

    Article  PubMed  CAS  Google Scholar 

  • Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133(2):653–663. doi:10.1104/pp.103.023499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127 (3):803–816. doi:10.1104/pp.010324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heck GR, Perry SE, Nichols KW, Fernandez DE (1995) Agl15, a MADS domain protein expressed in developing embryos. Plant Cell 7(8):1271–1282. doi:10.1105/Tpc.7.8.1271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S (2006) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1. Plant Cell 18(3):626–638. doi:10.1105/tpc.105.039412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ko S, Kamada H (2002) Enhancer-trapping system for somatic embryogenesis in carrot. Plant Mol Biol Rep 20(4):421–422. doi:10.1007/bf02772132

    Article  Google Scholar 

  • Kumar KK, Maruthasalam S, Loganathan M, Sudhakar D, Balasubramanian P (2005) An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Mol Biol Rep 23(1):67–73. doi:10.1007/Bf02772648

    Article  CAS  Google Scholar 

  • Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum L.) through metabolic stress. Plant Cell Rep 21(7):635–639. doi:10.1007/s00299-002-0554-9

    PubMed  CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22(7):465–470. doi:10.1007/s00299-003-0710-x

    Article  PubMed  CAS  Google Scholar 

  • Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 61(4–5):615–627. doi:10.1007/s11103-006-0036-5

    Article  PubMed  CAS  Google Scholar 

  • Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa)—a step towards genotype-independent regeneration. Plant Cell Tiss Org 73(1):21–35. doi:10.1023/A:1022666822274

    Article  CAS  Google Scholar 

  • Nobre J, Keith DJ, Dunwell JM (2001) Morphogenesis and regeneration from stomatal guard cell complexes of cotton (Gossypium hirsutum L.). Plant Cell Rep 20(1):8–15

    Article  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133(1):218–230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Norma LT, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6:231–234

    Article  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551. doi:10.1105/Tpc.011544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Nat Biotech 8(10):939–943

    Article  CAS  Google Scholar 

  • Perry SE, Nichols KW, Fernandez DE (1996) The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell 8(11):1977–1989. doi:10.2307/3870406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org 86(3):285–301. doi:10.1007/s11240-006-9139-6

    Article  Google Scholar 

  • Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA (2013) The fate of duplicated genes in a polyploid plant genome. Plant J 73(1):143–153. doi:10.1111/Tpj.12026

    Article  CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7(8):1259–1269. doi:10.1105/Tpc.7.8.1259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, deVries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124(10):2049–2062

    PubMed  CAS  Google Scholar 

  • Shadmanov RK, Shadmanova AR, Saranskaya LB, Ermakova IP (2013) Biotechnology of accelerated breeding and improvement of cotton varieties and other crops on tolerance to diseases, unfavorable environmental factors. Curr Opin Biotech 24:S36. doi:10.1016/j.copbio.2013.05.068

    Article  Google Scholar 

  • Shang H–H, Liu C-L, Zhang C-J, Li F-L, Hong W-D, Li F-G (2009) Histological and ultrastructural observation reveals significant cellular differences between Agrobacterium transformed embryogenic and non-embryogenic calli of cotton. J Integr Plant Biol 51(5):456–465. doi:10.1111/j.1744-7909.2009.00824.x

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103(48):18054–18059. doi:10.1073/pnas.0605389103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146(4):1663–1672. doi:10.1104/pp.108.115832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43(5):484–516. doi:10.1007/Pl00006110

    Article  PubMed  CAS  Google Scholar 

  • Tokuji Y, Kuriyama K (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J Plant Physiol 160(2):133–141. doi:10.1078/0176-1617-00892

    Article  PubMed  CAS  Google Scholar 

  • Trolinder N, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6(3):231–234. doi:10.1007/bf00268487

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Caruso LV, Downie AB, Perry SE (2004) The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16(5):1206–1219. doi:10.1105/tpc.021261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103. doi:10.1038/ng.2371

    Article  PubMed  CAS  Google Scholar 

  • Wilkins TW (2000) Cotton biotechnology in the next millennium: yield and fiber duality. Abstr Pap Am Chem S 219:U44–U45

    Google Scholar 

  • Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19(6):511–550. doi:10.1080/07352680091139286

    Article  CAS  Google Scholar 

  • Wu JH, Zhang XL, Nie YC, Jin SX, Liang SG (2004) Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). Vitro Cell Dev Pl 40(4):371–375. doi:10.1079/Ivp2004535

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhang CJ, Zhang XY, Liu CL, Wu ZX, Yang ZR, Zhou KH, Yang XJ, Li FG (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. J Integr Plant Biol 55(7):631–642. doi:10.1111/Jipb.12073

    Article  PubMed  CAS  Google Scholar 

  • Xu KD, Huang XH, Wu MM, Wang Y, Chang YX, Liu K, Zhang J, Zhang Y, Zhang FL, Yi LM, Li TT, Wang RY, Tan GX, Li CW (2014) A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. Plos One 9(1). doi:10.1371/journal.pone.0083556

  • Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98(1):47–55. doi:10.1016/j.ygeno.2011.04.007

    PubMed  CAS  Google Scholar 

  • Zhang BH, Liu F, Yao CB, Wang KB (2000) Recent progress in cotton biotechnology and genetic engineering in China. Curr Sci India 79(1):37–44

    CAS  Google Scholar 

  • Zhang C, Yu S, Fan S, Zhang J, Li F (2011) Inheritance of somatic embryogenesis using leaf petioles as explants in upland cotton. Euphytica 181(1):1–9. doi:10.1007/s10681-011-0380-7

  • Zhang X, Yao D, Wang Q, Xu W, Wei Q, Wang C, Liu C, Zhang C, Yan H, Ling Y, Su Z, Li F (2013) mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One 8(1):e54762. doi:10.1371/journal.pone.0054762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng QL, Zheng YM, Perry SE (2013) AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol 161(4):2113–2127. doi:10.1104/pp.113.216275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41(4):583–594. doi:10.1111/j.1365-313X.2004.02320.x

    Article  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5(10):1411–1423. doi:10.1105/tpc.5.10.1411

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30(3):349–359. doi:10.1046/j.1365-313X.2002.01289.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jiahe Wu and Dr. Hamamah Islam Butt for critical reading the manuscript. This work was supported by the National Science Fund for Distinguished Young Scholars (31125020) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuguang Li.

Additional information

Z. Yang and C. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, C., Wang, Y. et al. GhAGL15s, preferentially expressed during somatic embryogenesis, promote embryogenic callus formation in cotton (Gossypium hirsutum L.). Mol Genet Genomics 289, 873–883 (2014). https://doi.org/10.1007/s00438-014-0856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0856-y

Keywords

Navigation