Skip to main content
Log in

A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Ailsa Craig

CAPS:

Cleaved amplified polymorphic sequences

DAF:

Days after flowering

DAP:

Days after planting

DBF:

Days before flowering

dCAPs:

Derived cleaved amplified polymorphic sequence

EMS:

Ethylmethane sulfonate

NBRP:

National BioResource Project

Slelf1 :

Solanum lycopersicum elongated fruit 1

SSR markers:

Simple sequence repeat markers

TES markers:

Tomato expressed sequence tag (EST)-derived SSRmarkers

TGS marker:

Tomato genome-derived SSR markers

WT:

Wild type

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kanoum S, Terauchi R (2011) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat biot 30:174–178

    Article  Google Scholar 

  • Ariizumi T, Shinozaki Y, Ezura H (2013) Genes that influence yield in tomato. Breed Sci 63:3–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bertin N (2005) Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann Bot 95:439–447

    Article  CAS  PubMed  Google Scholar 

  • Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrera E, Rivero OR, Pereira Peres LE, Atares A, Garcia-Martinez JL (2012) Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol 160:1581–1596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chevalier C (2007) Cell cycle control and fruit development. Annu Plant Rev 32:269–290

    CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Presting GG, Tanksley SD (1996) Molecular mapping of the centromeres of tomato chromosomes 7 and 9. Mol Gen Genet 250:295–304

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997) Introgression and DNA marker analysis of Lycopersicon peruviamum, a wild relative of the cultivated tomato into Lycopersicum esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    Article  CAS  Google Scholar 

  • Gilaspy G, Ben-David H, Gruissm W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  Google Scholar 

  • Grandillo S, Jamilena M, Capel J, Zurita S, Angosto T, Lozano R (1999) Stamenless, a tomato mutant with homeotic conversions in petals and stamens. Planta 209:172–179

    Article  Google Scholar 

  • Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics 288:111–129

    Article  CAS  PubMed  Google Scholar 

  • IPGRI (1996) Descriptors for Tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome, p.29

  • Jiang N, Gao D, Xiao H, van der Knaap E (2009) Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. Plant J 60:181–193

    Article  CAS  PubMed  Google Scholar 

  • Ku HM, Liu J, Doganlar S, Tanksley SD (2001) Exploitation of Arabidopsis–tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome 44(3):470–475

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shape tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mintz-Oron S, Mendel T, Rogachev I et al (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munos S, Ranc N, Botton E, Berard A, Rolland S, Duffe P, Carretero Y, Le Paslier MC, Delalande CD, Bouzayen M, Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691

    Article  CAS  Google Scholar 

  • Pattison RJ, Catala C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BB, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez GR, Kim HJ, van der Knaap E (2013) Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111:256–264

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Asamizu E, Mizoguchi T, Fukuda N, Matsukura C, Ezura H (2009) Mutant resource for the miniature tomato (Solanum lycopersicum L.) “Micro-Tom”. J Japan Soc Hort Sci 78(1):6–13

    Article  Google Scholar 

  • Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamasaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52:283–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JW, Harbaugh BK (1989) Micro-Tom, a miniature dwarf tomato. Florida Agric Exp Sta Circ 370:1–6

    Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y et al (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirasawa K, Ishii E, Kim C, Ban T, Suzuki M, Ito T, Muranaka T, Kobayashi M, Nagata N, Isobe S, Tabata S (2013) Development of capsicum EST-SSR markers for species identification and in silico mapping onto the tomato genome sequence. Mol Breed 31:101–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • UPOV (2001) Guidelines for the conduct of tests for distinctness, uniformity and stability (tomato). Geneva, Switzerland, p. 24

  • van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358

    Article  Google Scholar 

  • Wang S, Chang Y, Guo J, Chen JG (2007) Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50:858–872

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157(3):1175–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao H, Jiang N, Schaffner EK, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlines morphologenesis. Plant Cell 17:2676–2692

    Google Scholar 

  • Xiao H, Radovich C, Welty N, Hsu J, Li D, Meulia T, van der Knaap E (2009) Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biol 9(49):6

    Google Scholar 

Download references

Acknowledgments

The authors thank the National BioResearch Project (NBRP), MEXT, Japan, for providing the seed stocks. We also thank all members of Prof. Hiroshi Ezura’s laboratory for helpful discussions throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ezura.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chusreeaeom, K., Ariizumi, T., Asamizu, E. et al. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Mol Genet Genomics 289, 399–409 (2014). https://doi.org/10.1007/s00438-014-0822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0822-8

Keywords

Navigation