Skip to main content
Log in

Genomic comparison of Salmonella typhimurium DT104 with non-DT104 strains

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

DT104 emerged as a new branch of Salmonella typhimurium with resistance to multiple antimicrobials. To reveal some general genomic features of DT104 for clues of evolutionary events possibly associated with the emergence of this relatively new type of this pathogen, we mapped 11 independent DT104 strains and compared them with non-DT104 S. typhimurium strains. We found that all 11 DT104 strains contained three insertions absent in non-DT104 strains, i.e., the previously reported ST104, ST104B and ST64B. However, SGI-1, a genomic island known to be responsible for DT104 multidrug resistance, was not present in all DT104 strains examined in this study: one DT104 strain did not contain SGI-1 but carried a 144 kb plasmid, suggesting possible evolutionary relationships between the two DNA elements in the development of antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, Mulvey MR (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183(19):5725–5732

    Article  PubMed  CAS  Google Scholar 

  • Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou YY, Wang HS, Lee YS (2005) The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33(5):1690–1698

    Article  PubMed  CAS  Google Scholar 

  • Cooke FJ, Brown DJ, Fookes M, Pickard D, Ivens A, Wain J, Roberts M, Kingsley RA, Thomson NR, Dougan G (2008) Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol 190(24):8155–8162

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH, Brenner DJ, Ewing WH, Falkow S (1973) Molecular relationships among the Salmonelleae. J Bacteriol 115(1):307–315

    PubMed  CAS  Google Scholar 

  • Fekete PZ, Nagy B (2008) Salmonella Genomic Island 1 (SGI1) and genetic characteristics of animal and food isolates of Salmonella typhimurium DT104 in Hungary. Acta Vet Hung 56(1):5–11

    Article  PubMed  Google Scholar 

  • Feng DF, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94(24):13028–13033

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Liu W-Q, Sanderson KE, Liu S-L (2011) Comparison of Salmonella genomes. In: Porwollik S (ed) Salmonella from genome to function. Caister Academic Press, Norfolk, pp 49–67

    Google Scholar 

  • Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ (1998) Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the US. N Engl J Med 338(19):1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Helms M, Ethelberg S, Molbak K (2005) International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg Infect Dis 11(6):859–867

    Article  PubMed  Google Scholar 

  • Hermans AP, Abee T, Zwietering MH, Aarts HJ (2005) Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and non prophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl Environ Microbiol 71(9):4979–4985

    Article  PubMed  CAS  Google Scholar 

  • Hermans AP, Beuling AM, van Hoek AH, Aarts HJ, Abee T, Zwietering MH (2006) Distribution of prophages and SGI-1 antibiotic-resistance genes among different Salmonella enterica serovar Typhimurium isolates. Microbiology 152(Pt 7):2137–2147

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann F, Edwards PR (1957) A revised, simplified Kauffmann–White schema. Acta pathologica et microbiologica Scandinavica 41(3):242–246

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe K, Mine H, Asai T, Kojima A, Ishihara K, Harada K, Ozawa M, Izumiya H, Terajima J, Watanabe H et al (2007) Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar typhimurium isolates from food-producing animals in Japan. J Vet Med Sci 69(11):1211–1213

    Article  PubMed  Google Scholar 

  • Le Minor L, Popoff MY (1987) Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella. Int J Syst Bacteriol 37:465–468

    Article  Google Scholar 

  • Liu SL (2007) Physical mapping of Salmonella genomes. In: Schatten H, Eisenstark A (eds) Methods in molecular biology. Methods and Protocols. Salmonella, vol 394, Humana Press Inc, Totowa, NJ, pp 39–58. ISBN:1064-3745

  • Liu SL, Sanderson KE (1992) A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol 174(5):1662–1672

    PubMed  CAS  Google Scholar 

  • Liu SL, Sanderson KE (1995a) I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J Bacteriol 177(11):3355–3357

    PubMed  CAS  Google Scholar 

  • Liu SL, Sanderson KE (1995b) Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA 92(4):1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93(19):10303–10308

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Hessel A, Sanderson KE (1993a) Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp. Escherichia coli, and other bacteria. Proc Natl Acad Sci USA 90(14):6874–6878

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Hessel A, Sanderson KE (1993b) The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol 175(13):4104–4120

    PubMed  CAS  Google Scholar 

  • Liu SL, Hessel A, Sanderson KE (1993c) The XbaI-BlnI-CeuI genomic cleavage map of Salmonella enteritidis shows an inversion relative to Salmonella typhimurium LT2. Mol Microbiol 10(3):655–664

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Schryvers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome structure. J Bacteriol 181(21):6747–6755

    PubMed  CAS  Google Scholar 

  • Liu GR, Rahn A, Liu WQ, Sanderson KE, Johnston RN, Liu SL (2002) The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol 184(10):2626–2633

    Article  PubMed  CAS  Google Scholar 

  • Liu GR, Liu WQ, Johnston RN, Sanderson KE, Li SX, Liu SL (2006) Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol Biol Evol 23(2):365–371

    Article  PubMed  Google Scholar 

  • Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, Guo JT, Peng YH, Jin Y, Li YG, Hu SN et al (2009) Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS One 4(2):e4510

    Article  PubMed  Google Scholar 

  • Marshall P, Lemieux C (1992) The I-CeuI endonuclease recognizes a sequence of 19 base pairs and preferentially cleaves the coding strand of the Chlamydomonas moewusii chloroplast large subunit rRNA gene. Nucleic Acids Res 20(23):6401–6407

    Article  PubMed  CAS  Google Scholar 

  • Matiasovicova J, Adams P, Barrow PA, Hradecka H, Malcova M, Karpiskova R, Budinska E, Pilousova L, Rychlik I (2007) Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. Arch Microbiol 187(5):415–424

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Jones R, Patel Y, Nelson M (1987) Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res 15(15):5985–6005

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F et al (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858):852–856

    Article  PubMed  CAS  Google Scholar 

  • Mmolawa PT, Schmieger H, Heuzenroeder MW (2003) Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar typhimurium DT 64. J Bacteriol 185(21):6481–6485

    Article  PubMed  CAS  Google Scholar 

  • Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A (2006) The genetics of Salmonella genomic island 1. Microbes Infect 8(7):1915–1922

    Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26(1–2):74–86

    Article  PubMed  CAS  Google Scholar 

  • Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT et al (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858):848–852

    Article  PubMed  CAS  Google Scholar 

  • Popoff MY (2001) Antigenic formulas of the Salmonella serovars, 8th edn. WHO Collaborating Center for Reference and Research on Salmonella, Paris

    Google Scholar 

  • Popoff MY, Le Minor LE (2005) Genus XXXIII Salmonella. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 764–799

    Google Scholar 

  • Poppe C, Ziebell K, Martin L, Allen K (2002) Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates. Microb Drug Resist 8(2):107–122

    Article  PubMed  CAS  Google Scholar 

  • Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ 3rd (1989) Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27(2):313–320

    PubMed  CAS  Google Scholar 

  • Tanaka K, Nishimori K, Makino S, Nishimori T, Kanno T, Ishihara R, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y et al (2004) Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J Clin Microbiol 42(4):1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Liu SL (2012) The 3Cs provide a novel concept of bacterial species: messages from the genome as illustrated by Salmonella. Antonie Van Leeuwenhoek 101(1):67–72

    Article  PubMed  CAS  Google Scholar 

  • Threlfall EJ, Frost JA, Ward LR, Rowe B (1994) Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 134(22):577

    Article  PubMed  CAS  Google Scholar 

  • Weese JS, Baird JD, Poppe C, Archambault M (2001) Emergence of Salmonella typhimurium definitive type 104 (DT104) as an important cause of salmonellosis in horses in Ontario. Can Vet J 42(10):788–792

    PubMed  CAS  Google Scholar 

  • Yokoyama E, Maruyama S, Kabeya H, Hara S, Sata S, Kuroki T, Yamamoto T (2007) Prevalence and genetic properties of Salmonella enterica serovar typhimurium definitive phage type 104 isolated from Rattus norvegicus and Rattus rattus house rats in Yokohama city Japan. Appl Environ Microbiol 73(8):2624–2630

    Article  PubMed  CAS  Google Scholar 

  • Yu CY, Chou SJ, Yeh CM, Chao MR, Huang KC, Chang YF, Chiou CS, Weill FX, Chiu CH, Chu CH, Chu C (2008) Prevalence and characterization of multidrug-resistant (type ACSSuT) Salmonella enterica serovar Typhimurium strains in isolates from four gosling farms and a hatchery farm. J Clin Microbiol 46(2):522–526

    Google Scholar 

Download references

Acknowledgments

This work was supported by Genome Canada Grant 256177 to CP; a Grant of National Natural Science Foundation of China (NSFC31100134) to QHZ; a Grant of National Natural Science Foundation of China (NSFC30970078) and a Grant of Natural Science Foundation of Heilongjiang Province of China to GRL; a Heilongjiang Innovation Endowment Award for graduate studies (YJSCX2012-197HLJ) to LT; and Grants of the National Natural Science Foundation of China (NSFC30970119, 81030029, 81271786), a Grant of the National Natural Science Foundation of China and National Institutes of Health of USA (NSFC-NIH 81161120416), and a Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, 20092307110001) to SLL.

Conflict of interest

All authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Hua Zou, Gui-Rong Liu or Shu-Lin Liu.

Additional information

Communicated by D. Ussery.

E.-Y. Zhao, H.-X. Bao, and L. Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, EY., Bao, HX., Tang, L. et al. Genomic comparison of Salmonella typhimurium DT104 with non-DT104 strains. Mol Genet Genomics 288, 549–557 (2013). https://doi.org/10.1007/s00438-013-0762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0762-8

Keywords

Navigation